
Holistic Recommender Systems for Software Engineering

Luca Ponzanelli
REVEAL @ Faculty of Informatics
University of Lugano, Switzerland

luca.ponzanelli@usi.ch

ABSTRACT
Software maintenance is a relevant and expensive phase of the
software development process. Developers have to deal with legacy
and undocumented code that hinders the comprehension of the
software system at hand. Enhancing program comprehension by
means of recommender systems in the Integrated Development
Environment (IDE) is a solution to assist developers in these tasks.
The recommender systems proposed so far generally share common
weaknesses: they are not proactive, they consider a single type of
data-source, and in case of multiple data-source, relevant items are
suggested together without considering interactions among them.

We envision a future where recommender systems follow a holis-
tic approach: They provide knowledge regarding a programming
context by considering information beyond the one provided by
single elements in the context of the software development. The
recommender system should consider different elements such as
development artifact (e.g., bug reports, mailing lists), and online
resources (e.g., blogs, Q&A web sites, API documentation), devel-
opers activities, repository history etc. The provided information
should be novel and emerge from the semantic links created by the
analysis of the interactions among these elements.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—In-
teractive environments

General Terms
Documentation

Keywords
Recommender Systems, Developer Support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

1. MOTIVATION
In the early nineties, Corbi et al. pointed out how “Software

renewal tools are needed to reduce the costs of modifying and main-
taining large programming systems, to improve our understanding
of programs” [5]. Research has shown that maintaining software
systems can take up to 75% of the total costs of a software product
[7, 24]. In the maintenance phase, developers to spend about 50%
of their working time to understand the code before modifying it
[15], and they have to deal with legacy and undocumented code that
hinders the comprehension of a software system at hand.

The standard means adopted by developers both during develop-
ment and maintenance tasks is the Integrated Development Envi-
ronment (IDE). IDEs are used not only to write code, but also to
understand it, and even to design new parts of a system [14]. Thus,
enhancing program comprehension in the IDE to provide developers
with better support to understand the system at hand is a viable
solution. We see two ways of pursuing it: (1) by studying alternative
types of interactions with the IDE [4, 8], or (2) by improving the
available IDEs by extending their functionalities. In our research,
we focus on the latter, and consider recommender systems as a
means to enhance program comprehension.

2. STATE OF THE ART
According to Robillard et al., a Recommender Systems for Soft-

ware Engineering (RSSE) “is a software application that provides
information items estimated to be valuable for a software engineer-
ing task in a given context” [22]. An RSSE is made up of three
main components: (1) a data collection mechanism, (2) a recommen-
dation engine to analyze the data and generate recommendations,
and (3) a user interface to present recommendations. The data fed
to the data collection mechanism defines the kind of recommenda-
tion produced. For example, Hipikat [6] and DeepIntellisense [10]
suggest relevant software development artifacts according to the
current code context, Strathcona [11] recommends relevant code
example given a code fragment, and eRose [30] suggests elements
to be changed according to past changes extracted from the version-
ing system. These examples of recommender systems treat data
produced in the context of the project under analysis. Research also
focused on the web as data source for recommender systems [9, 12,
23, 27] to suggest artifacts that developers use to complement the
information needed to complete a task. The weakness of seminal
tools like eRose, Hipikat and DeepIntellisense, concerns the interac-
tion with the developer: She must proactively invoke them and they
continuously display information that augments the complexity of
what is displayed in the IDE. Moreover, the source of information
fed to recommender systems is generally focused on a single type of
data (e.g., email, bug reports). In the rare case where multiple arti-
facts are taken into account as source of data (i.e.,DeepIntellisense),

they are considered as single elements and proposed together to the
developer. This way of generating recommendations overwhelms
the developer and makes the suggestions ineffective. In contrast, all
the artifacts should be considered together, analyzed from a holistic
point of view and then proposed to the developer.

3. HOLISTIC RECOMMENDER SYSTEMS
FOR SOFTWARE ENGINEERING

The term Holism derives from the Greek word holos, meaning
whole. According to the idea of holism, a system and its functioning
cannot be fully understood by means of a reduction to its compo-
nents, but should rather be viewed as a whole. The same can be
applied in the context of software development: The software devel-
opment process leaves traces of the interaction of people in different
artifacts either in in-project artifacts (e.g., email, bug reports), and
in the contents provided by the online resources (e.g., API docu-
mentation, forums, blogs, tutorial, Q&A websites). These resources
are accessed and used by developers whenever they need additional
information to accomplish a programming task. The information
is likely to be spread across different artifacts. For each consulted
artifact, the developer would extract parts of the contents, and merge
them together to get a better understanding of the programming con-
text at hand. Therefore, all the resources represent small pieces of
information that should be viewed as the whole information needed
to accomplish the task. The whole is greater than the sum of its
parts: By considering the interactions that those elements have with
each other, we plan to derive semantic links among them that allow
novel type of information to emerge.

Suggesting every artifact related to a programming context would
overload the developer and make the recommender system ineffec-
tive. Viceversa, a holistic recommender system should collect all
the involved artifacts, information about developers, and software
history, to analyze their interactions (e.g., what artifacts are accessed
by developers, what part of the system relates to either a developer
or an artifact), discover semantic links, and provide meaningful
summaries. Summaries can be either extractive or abstractive. The
former concerns the extraction of prominent sentences from a text,
while the latter is “generally sought to dig well below the source
linguistic surface to identify important conceptual content” and
generally produces novel output [26].

According to our vision, a holistic recommender system can be
approached with three milestones that would cope with the problems
we pointed out about recommender systems:

(1) Multi-Level Summarization: Research already tackled the
summary of development artifacts like bug reports [21], emails [13]
and source code [25]. We want to provide multi-level extractive
summary of development artifacts. For multi-level we mean that a
developer would initially access the minimum information extracted
to let her evaluate the usefulness of the discussion. Then, she
could request more and access additional levels of information. The
higher the accessed level, the larger the displayed contents of the
discussion. This would require novel approaches to summarize
artifacts according to a reference context.

(2) Multi-Source IDE Recommender: We need to retrieve
information from different sources of information by taking into
account both human-made artifacts (e.g., bug reports, mailing lists)
created during the development, and online resources (e.g., blogs,
forums, Q&A websites). To this aim, we should devise a set of
models capable of evaluating these artifacts according to a given
code context in the IDE.

(3) Multi-Source, Multi-Level IDE Recommender: By merg-
ing the previous milestones, we would provide a holistic recom-

Figure 1: The SeaHawk Document View

mender systems. We aim at generating multi-level abstractive sum-
maries produced by considering multiple items concerning a code
context in the IDE as data source for RSSEs. The summaries would
not be a collage of extractive summaries, but rather they would pro-
vide a semantically connected overview of the information provided
by the extractive summaries.

3.1 Current Status
In the last years, Stack Overflow1 has become a valuable venue

where “millions of entries that contribute to the body of knowledge
in software development” [28] are made by developers for develop-
ers. Stack Overflow is also effective: Mamykina et al. reported that
more than 92% of the questions on expert topics are answered in
a median time of 11 minutes [16]. Given these facts, Stack Over-
flow is a prominent data source for RSSEs that has scarcely been
exploited by any Integrated Development Environment (IDE). We
initially integrated this information inside the IDE to enhance pro-
gram comprehension by means of recommender systems. In the
second part of our research we focused on automating the recom-
mendations and we introduced the concept of self-confidence. We
devised a novel approach to establish a better a semantic connection
between code contexts and Stack Overflow discussions by taking
into account community related, textual, and code aspects.

3.1.1 Accessing Stack Overflow in the IDE
Due to its developer-oriented nature, Stack Overflow is most

likely to be in the first results of a Google search when a developer
searches for programming topics. However, accessing this source
of information comes with a caveat: The developer needs to leave
the IDE, access the web browser, retrieve the discussions, evaluate
the contents, and bring the part of the needed information into the
IDE. This process breaks the programming flow, and requires time
and energy to formulate one’s problem and peruse and process the
results. The inception of our research concerns the integration of
Stack Overflow inside the Eclipse IDE. We provided the capability
of searching and displaying discussions without leaving the IDE
[2]. In a second step we wanted to provide additional functionali-
ties to enhance program comprehension in the IDE. We developed
SeaHawk [19][20], a plugin for the Eclipse IDE that automatically
formulates queries from the current context in the IDE, and presents
a ranked and interactive list of results (see Figure 1). SeaHawk lets
users identify individual discussion pieces (i.e., single questions
or answers) and import code samples through simple drag & drop.
Users can also link Stack Overflow discussions and source code.

We evaluated SeaHawk, and collected insights about our ap-
proach. SeaHawk showed poor results on badly written methods
(e.g., long methods, abbreviated identifiers), while it provided good
results when the code largely used libraries, or the code was imple-
menting well known algorithms (e.g., Fibonacci sequence, sorting
algorithm).

1http://www.stackoverflow.com

http://www.stackoverflow.com

Figure 2: The Prompter Notification Center

3.1.2 A Programming Prompter
A recommender system should ideally behave like a prompter in

a theater: Ready to provide suggestions whenever the actor needs
them, and ready to autonomously give suggestions if it feels some-
thing is going wrong. To this aim, we devised a novel approach that,
given a context in the Integrated Development Environment (IDE),
automatically retrieves potentially pertinent discussions from Stack
Overflow, evaluates their relevance using a multi-faceted ranking
model, and, if a given confidence threshold is surpassed, notifies the
developer about the available help. We implemented our approach in
Prompter, an Eclipse plug-in. Figure 2 shows the notification center
through which Prompter notifies developers. Every notification
reports the title of the Stack Overflow discussion and the percentage
of confidence that Prompter has on the discussion in respect to the
current context. Differently from SeaHawk, the notion of relevance
of a discussion is based on a ranking model capable of capturing
relations between Stack Overflow discussions and source code. The
relations are evaluated trough different aspects concerning the code
(i.e., API methods usage), textual similarity, and community aspects
(i.e., user reputation). We evaluated the ranking model via a survey.
We asked people from both industry and academia to evaluate the
relevance between a code context and the top ranked discussion
provided by Prompter. In general, people evaluated the discussion
as related to the code context. We also conducted an experiment
to evaluate the usefulness of Prompter in development and main-
tenance tasks. Results showed how Prompter helps developers in
achieving a better completeness of the tasks with particular success
for greenfield development.

The results of the research concerning Prompterhave been sub-
mitted to ICSE 2014 (36th ACM/IEEE International Conference on
Software Engineering), and we are waiting for notification.

3.2 Improving Defect Prediction
Many researches performed defect prediction by relying on the

historical and structural information provided by past defects [29],
source code metrics [18][3] and repositories [17]. Bacchelli et
al. [1] obtained relevant results in using information regarding the
popularity of classes, in the contents of development emails, as a
complement to approaches based on code metrics. Following a holis-
tic approach, additional information regarding part of the software
used (i.e., libraries) can be exploited from other artifacts in other to
analyze different aspects of a software component. Stack Overflow
can be used as source of information to study the bugginess of an
API: We can collect statistics about bugginess of specific classes
in common used libraries and use this data as predictor to extend
actual defect prediction models. We need to devise an approach to
understand if a discussion regards a problem with a library and we
need to identify the classes involved. A possible approach would be
to extract stack traces and analyze them to identify such information.
Moreover, natural language analysis is needed in the analysis of the
discussion to gather additional information about the problem.

4. CONCLUSIONS
Program comprehension is an important aspect of software de-

velopment, in particular during the maintenance phase. Providing
recommender systems in the IDE is a possible solution to provide
developers with additional information about the system at hand and
helpful for the current programming task. Developers use informa-
tion spread across development artifacts (e.g., bug reports, emails)
and online resources (e.g., Q&A websites, blogs, tutorials) while
performing a programming task. We propose a research plan to
develop a holistic recommender systems that should consider all of
these artifacts and discover semantic links.

So far we focused on harnessing a Stack Overflow as data source
for recommender systems. We implemented SeaHawk to provide
developers with capabilities of generating queries from code, re-
trieving discussions, linking them to the code, and importing code
samples. On the other hand, recommender systems should be also
proactive. Following this philosophy, we developed Prompter, a
plugin for the Eclipse IDE that automatically retrieves, evaluates,
and suggests Stack Overflow discussions to the developer if a certain
confidence threshold is surpassed.

We are at the beginning of the second year of the Ph.D., and so
far we obtained two tools, SeaHawk and Prompter, as contributions
and the following publications:

1. Harnessing Stack Overflow for the IDE
Alberto Bacchelli, Luca Ponzanelli, Michele Lanza. In Pro-
ceedings of RSSE 2012 (3rd International Workshop on Rec-
ommendation Systems for Software Engineering), pp. 26-30,
IEEE CS Press, 2012.

2. Leveraging Crowd Knowledge for Software Comprehension
and Development
Luca Ponzanelli, Alberto Bacchelli, Michele Lanza. In Pro-
ceedings of CSMR 2013 (17th IEEE European Conference on
Software Maintenance and Reengineering), pp. 57-66. IEEE
CS Press, 2013.

3. SeaHawk: Stack Overflow in the IDE
Luca Ponzanelli, Alberto Bacchelli, Michele Lanza. In Pro-
ceedings of ICSE 2013 (35th ACM/IEEE International Con-
ference on Software Engineering), pp. 1295-1298. IEEE CS
Press, 2013.

Reaching the concept of holistic recommender system requires
further research investigation. The source of information cannot be
limited to Stack Overflow. The information should arise from the
semantic links among all the artifacts relevant for a code context
and proposed to the developer in a multi-level summarized form
without overwhelming her.

5. ACKNOWLEDGEMENTS
Luca Ponzanelli thanks the Swiss National Science foundation for

the financial support through SNF Project “SOSYA”, No. 132175.

6. REFERENCES
[1] A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular

classes more defect prone? In Proceedings of FASE 2010
(13th international conference on Fundamental Approaches to
Software Engineering), pages 59–73. Springer-Verlag, 2010.

[2] A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing stack
overflow for the ide. In Proceedings of RSSE 2012 (3rd
International Workshop on Recommendation Systems for
Software Engineering), pages 26–30. IEEE CS Press, 2012.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Transactions on Software Engineering, 22(10):751–761, Oct.
1996.

[4] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. Laviola. Code
bubbles: Rethinking the user interface paradigm of integrated
development environments. In Proceedings of ICSE 2010
(32nd ACM/IEEE International Conference on Software
Engineering), pages 293–296. ACM, 2010.

[5] T. Corbi. Program Understanding: Challenge for the 1990s.
IBM Systems Journal, 28(2):294–306, 1989.

[6] D. Cubranic and G. Murphy. Hipikat: recommending
pertinent software development artifacts. In Proceedings of
ICSE 2003 (25th IEEE International Conference on Software
Engineering), pages 408–418. IEEE CS Press, 2003.

[7] A. Davis. 201 Principles of Software Development.
McGraw-Hill, 1995.

[8] R. DeLine and K. Rowan. Code canvas: zooming towards
better development environments. In Proceedings of ICSE
2010 (32nd ACM/IEEE International Conference on Software
Engineering), pages 207–210. ACM, 2010.

[9] M. Goldman and R. Miller. Codetrail: Connecting source
code and web resources. Journal of Visual Languages &
Computing, pages 223–235, 2009.

[10] R. Holmes and A. Begel. Deep intellisense: a tool for
rehydrating evaporated information. In Proceedings of MSR
2008 (5th international working conference on Mining
software repositories), pages 23–26. ACM, 2008.

[11] R. Holmes, R. Walker, and G. Murphy. Strathcona example
recommendation tool. SIGSOFT Software Engineering Notes,
30:237–240, 2005.

[12] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes.
Automatically locating relevant programming help online. In
Proceedings of VL/HCC 2012 (The IEEE Symposium on
Visual Languages and Human-Centric Computing), pages
127–134. IEEE, 2012.

[13] D. Lam, S. L. Rohall, C. Schmandt, and M. K. Stern.
Exploiting e-mail structure to improve summarization. In
Proceeding of CSCW 2002 (ACM Conference on Computer
Supported Cooperative). ACM, 2002.

[14] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of
ICSE 2006 (28th ACM International Conference on Software
Engineering), pages 492–501. ACM, 2006.

[15] B. Lientz and B. Swanson. Problems in Application Software
Maintenance. Communications of the ACM, 24(11):763–769,
1981.

[16] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and
B. Hartmann. Design lessons from the fastest Q&A site in the
west. In Proceedings of CHI 2011 (29th Conference on
Human factors in computing systems), pages 2857–2866.
ACM, 2011.

[17] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis
of the efficiency of change metrics and static code attributes

for defect prediction. In Proceedings of ICSE 2008 (30th
International Conference on Software Engineering), pages
181–190. ACM, 2008.

[18] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proceedings of ICSE 2006 (28th
International Conference on Software Engineering), pages
452–461. ACM, 2006.

[19] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging crowd
knowledge for software comprehension and development. In
Proceedings of CSMR 2013 (17th IEEE European Conference
on Software Maintenance and Reengineering), pages 59–66.
IEEE, 2013.

[20] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack
Overflow in the IDE. In Proceedings of ICSE 2013 (35th
ACM/IEEE International Conference on Software
Engineering), pages 1295–1298. IEEE CS Press, 2013.

[21] S. Rastkar, G. Murphy, and G. Murray. Summarizing software
artifacts: a case study of bug reports. In Proceedings of ICSE
2010 (32nd ACM/IEEE International Conference on Software
Engineering), pages 505–514. ACM, 2010.

[22] M. P. Robillard, R. J. Walker, and T. Zimmermann.
Recommendation systems for software engineering. IEEE
Software, 27(4):80–86, 2010.

[23] N. Sawadsky and G. Murphy. Fishtail: from task context to
source code examples. In Proceedings of TOPI 2011 (1st
Workshop on Developing Tools as Plug-ins), pages 48–51.
ACM, 2011.

[24] I. Sommerville. Software Engineering. Addison-Wesley, 7th
edition, 2004.

[25] A. M. Sonia Haiduc, Jairo Aponte. Supporting program
comprehension with source code summarization. In
Proceedings of ICSE 2010 (32nd ACM/IEEE International
Conference on Software Engineering), pages 223–226. ACM,
2010.

[26] K. Spärck Jones. Automatic summarising: The state of the art.
Information Processing and Management, 43(6):1449–1481,
Nov. 2007.

[27] J. Stylos and B. A. Myers. Mica: A web-search tool for
finding api components and examples. In Proceedings of
VL/HCC (The IEEE Symposium on Visual Languages and
Human-Centric Computing), pages 195–202, 2006.

[28] C. Treude, O. Barzilay, and M. A. Storey. How do
programmers ask and answer questions on the web? (NIER
track). In Proceedings of ICSE 2011 (33rd International
Conference on Software Engineering), pages 804–807. ACM,
2011.

[29] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects
for eclipse. In Proceedings of PROMISE 2007 (3rd
International Workshop on Predictor Models in Software
Engineering), page 9. IEEE Computer Society, 2007.

[30] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In 26th
International Conference on Software Engineering (ICSE

2004), pages 563–572. IEEE CS Press, 2004.

	Motivation
	State of the Art
	Holistic Recommender Systems for Software Engineering
	Current Status
	Accessing Stack Overflow in the IDE
	A Programming Prompter

	Improving Defect Prediction

	Conclusions
	Acknowledgements
	References

