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Abstract—Technical questions and answers (Q&A) services
have become a valuable resource for developers. A prominent
example of technical Q&A website is Stack Overflow (SO), which
relies on a growing community of more than two millions of
users who actively contribute by asking questions and providing
answers. To maintain the value of this resource, poor quality
questions—among the more than 6,000 asked daily—have to
be filtered out. Currently, poor quality questions are manually
identified and reviewed by selected users in SO; this costs
considerable time and effort. Automating the process would save
time and unload the review queue, improving the efficiency of
SO as a resource for developers.

We present an approach to automate the classification of
questions according to their quality. We present an empirical
study that investigates how to model and predict the quality of
a question by considering as features both the contents of a post
(e.g., from simple textual features to more complex readability
metrics) and community-related aspects (e.g., popularity of a user
in the community). Our findings show that there is indeed the
possibility of at least a partial automation of the costly SO review
process.

I. Introduction

The advent of Q&A websites has changed the way people
seek for information on the web. Q&A websites like Yahoo!
Answers and Ask1 have become prominent information venues.

People ask questions to the crowd of such communities to
gather the information they need. The popularity of Q&A web-
sites has also grown in software engineering. Stack Overflow2

is a prominent example of a technical Q&A website, which
allows developers to exchange knowledge about programming
problems. Treude et al. [23] investigated the interaction of
developers with Stack Overflow, and reported how this exchange
of Q&A among developers is providing a valuable knowledge
base that can be leveraged during software development. Stack
Overflow discussions tackle topics, ranging from common
programming and algorithmic problems to library-related API
discussions, that can help in everyday developers’ tasks.

Stack Overflow relies on a community that is steadily
growing both in size and in the amount of the contents it
provides. According to the SO data dump of September 20133

provided by the Stack Exchange network, Stack Overflow stores
more that 5.5M questions, 10.2M answers and a community
counting more than 2.3M users. The number of questions added
each month has been steadily growing since the inception of

1See http://answers.yahoo.com and http://www.ask.com
2See http://stackoverflow.com
3http://www.clearbits.net/torrents/2155-sept-2013

Fig. 1. Questions added monthly to Stack Overflow

Stack Overflow, as we see in Figure 1, and has reached peaks
of more than 200,000 new questions per month.

The quality of the contents provided by Q&A websites
varies, and ranges “from high-quality questions and answers to
low-quality, sometimes abusive content [, thus making] the tasks
of filtering and ranking more complex than in other domains”
[1]. In Stack Overflow, the task of keeping up the quality of
questions is left to the crowd: Poor quality posts are identified
by a selected subset of users in the community (i.e., moderators)
who have the rights of closing and deleting questions.

As reported by Correa et al. [6], around 80% of the
questions take at least 1 month or more to receive a delete
vote, and approximately 14% receive 3 delete votes before
being actually deleted. This latency in the deletion process is
a symptom of the amount of effort required by moderators to
guarantee a satisfiable level of quality in Stack Overflow.

To solve this problem we propose an approach to automatize
the filtering process. We have devised a quality predictor that
helps moderators in identifying poor-quality questions at their
creation time, thus reducing the review time. To do so, we
have investigated the concept of quality for Stack Overflow
questions and developed the classification approach.

Contributions. We make the following contributions:

• An empirical study where we mine the Stack Overflow
data dump to understand the concept of bad and good
questions and to build the related datasets.

• A set of metrics to quantify the concept of quality by
considering both textual (e.g., readability metrics) and
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non-textual features (e.g., popularity of a user in the
community), also showing which of those correlate with
the quality.

• A classification approach to evaluate the quality of
questions and to identify high quality and low quality
questions at creation time.

Structure of the Paper. In Section II we survey related
work. In Section III we discuss how we construct the datasets
we use for our analysis. In Section IV we present the metrics
that we use to construct our classifier. In Section V we then
present our classifier and the results we obtain. In Section VI
we discuss our findings and the threats to validity. We draw
our conclusions in Section VII.

II. RelatedWork

Many studies analyzed how users in Q&A websites behave
and interact among each others, with particular attention to the
Stack Overflow community [23], [22]. Other studies focused
on the contents of the discussions, and classified the topics
and the trends on Stack Overflow. Barua et al. [4] presented
an in-depth study of the topics discussed among developers by
using Latent Semantic Indexing (LSI) [9] to cluster discussions.
Allamanis et al. [2] constructed topic-models by means of
Latent Dirichlet Allocation (LDA) [8] to associate concepts to
questions.

A considerable amount of work has been done on prediction
models. Stanley and Byrne [21] mined the Stack Overflow
dataset and devised a Bayesian probabilistic model to predict
hashtags, given a post. Kuo [15] compared different classi-
fication and topic-based model to perform word prediction,
applying it on the Stack Overflow dataset to predict the tags
of a posts given its contents.

Pal et al. [18] analyzed users’ behavior to early detect
potential experts in Q&A websites by characterizing and
estimating users’ motivation and ability to provide help in
the community. By means of machine learning approaches,
they predicted the potential of a user given her first few weeks
of activity in the community.

Many studies focused on predicting the quality of a post
given both textual and non-textual features. Jeon et al. [14]
devised a framework based on stochastic processes to predict
the quality of answers in Naver.4 They collected Q&A pairs
from Naver, manually classified them in three categories (i.e.,
bad, medium, good), and extracted 13 non-textual features to
evaluate the quality.

Arai et al. [3] presented a general model to predict quality
of information in Q&A websites by using three classification
algorithms (e.g., Decision trees, Boosting, and Naı̈ve Bayes)
provided by the Weka framework [24]. They took a snapshot
of Yahoo! Answer for Indonesian people,5 randomly selected
and resolved 1,500 Q&A pairs, and extracted n-textual features,
reaching a quality prediction with a precision close to 90% on
the testing set. In our work we do not make use of annotators
to create quality dataset of Q&A. Our approach is completely
based on mining Stack Overflow data. We rely on the fact that

4http://www.naver.com
5http://id.answer.yahoo.com

the crowd defines the quality of question; this allows us to
make use of a much larger dataset. Moreover, we analyze the
information at disposal to infer different levels of quality.

Correa and Sureka [6] presented a large scale study on
deleted questions on Stack Overflow where they show that the
quality of questions decades in pyramidal fashion, and present
an analysis of timing for closed and deleted questions. They
developed a predictive model for deleted questions based on
decision trees that uses 47 features, both non-textual and textual,
extracted from the question’s text and the author’s information.
Their model reaches a precision of 66% with 10-fold cross
validation on their dataset.

We focus on Stack Overflow as Q&A website reference.
We present a study aimed at detecting questions that can be
excluded from the review queue of Stack Overflow reviewers.
We do not only focus on deleted questions, but we focus on
different levels of quality, and in particular on high quality
questions. Indeed, the former would immediately be marked as
bad, and removed from Stack Overflow, while the latter would
be immediately excluded from the review queue. We also focus
on both textual and non-textual features for a question, and we
devised three distinct set of metrics concerning (i) readability
metrics, (ii) author’s popularity, and (iii) simple textual features
in use at Stack Overflow. We analyze the pros and cons in
using machine learning approaches like decision trees, and
present an alternative approach based on a linear combination
of features.

III. Dataset Construction

The September 2013 data dump contains 5,648,975 ques-
tions. Understanding the concept of quality for a question
is very subjective if left to the judgment of a single person.
On the other hand, in Stack Overflow low-quality question
or a high-quality questions are defined by the crowd itself.
We decided to rely on this information to identify quality.
There are some actions the crowd can take to discriminate
between bad and good posts: Every user can ‘up vote’ or
‘down vote’ a question or an answer, and moderators can
vote for closing or deleting a question. Moreover, we can
also consider information concerning the interaction with the
question, i.e., the answers. Indeed, a question with an accepted
answer represents a discussion, or a posed problem, that has
obtained the information needed. When an originator user (i.e.,
the user who posed the question) accepts a specific answer, she
is closing the discussion by pointing out the solution. Another
aspect to take into account is the evolution of the question.
Authors can modify their questions to clarify some parts,
augment the information provided, and improve the overall
quality. Modifying a question could have indirect side effects
on the quality evaluation provided by the crowd. Therefore, we
exclude from the dataset every question whose original body
has been edited.

We also discard all questions whose score is 0. We assume
that 0-scored questions have not attracted enough interests from
the community, making it difficult to evaluate and classify their
quality with the information at disposal.

After applying all the above mentioned filtering techniques
we end up with a dataset of 1,262,959 questions, which we
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subdivide into high quality and low quality categories according
to the following definitions:

• High Quality: Questions, neither closed nor deleted, with
a score greater than zero and with an accepted answer;
1,110,260 questions fall into this category.

• Low Quality: Questions with a score below zero, closed
or deleted in their final state; 152,691 questions fall into
this category.

With only two categories a clear quality distinction between
questions is not available: The variance of the quality among
posts in Q&A websites is considerable [1], which in turn leads
to very noisy data. For this reason, we want to further refine
each quality class by identifying ‘very good’ and ‘very bad’
questions.

‘Very bad’ questions are low quality questions that have
been closed or deleted in their final state, without considering
the score they obtained. We do not consider as ‘very bad’ the
ones that have been closed because they were duplicates of
existing questions, since the closing was not due to quality-
related issues (indeed, a duplicate can be a clone of a very
good question). We obtain a set of 81,854 ‘very bad’ questions.

To define a set of ‘very good’ questions one is naturally
drawn to selecting those with very high scores. This raises
the question about which score threshold one should pick. We
picked as score threshold of 7, which generates a set of ‘very
good’ questions of roughly the same size as the set of ‘very
bad’ ones. This leads to a set of 76,592 ‘very good’ questions.

Table I reports the distribution of the quality classes in our
dataset.

Class Description Size
A Very good questions (with accepted answer, not

closed, not deleted, score > 7)
76,592

B Good questions (with accepted answer, not closed,
not deleted, score 1-6)

1,033,676

C Bad questions (not closed, not deleted, score < 0) 70,837
D Very bad questions (closed or deleted) 81,854

Total 1,262,959
TABLE I. Quality classes of the questions in our dataset.

A. Creating Datasets for Training and Testing

For the purpose of our study, we created four different
datasets that we need for training and testing. As we see in
Table I, the four classes are unbalanced. In particular the class
Good considerably differs from the other three classes. To
reduce the bias in the classification phase, we balanced the size
of the classes in each dataset by randomly downsampling the
largest class [13]. Table II presents the four datasets with their
related sizes.

Dataset T1 T2 T3 T4
(Training) (Testing) (Training) (Testing)

Very Good 10,000 66,592 5,000 65,837
Good 0 0 5,000 65,837
Bad 0 0 5,000 65,837
Very Bad 10,000 66,592 5,000 65,837
Total 20,000 133,184 20,000 263,348

TABLE II. Datasets created for our study.

We created pairs of datasets with training and testing
purposes respectively (see Section V). Each dataset in a pair

is not interleaved with the other. The first pair, T1 and T2,
excludes intermediate quality class, thus referring to our first
rough definition of quality. The second pair , T3 and T4, refers to
the extended definition of quality for Stack Overflow questions,
thus including all four classes.

IV. Metrics Definition

We identified three sets of metrics that cover textual and
non-textual features of Stack Overflow posts. All the reported
metrics are calculated by considering the data available
(e.g., author’s information) at post creation time. All metrics
range between 0 and 1, being normalized according to their
minimum and maximum value over all the dataset (Table I).

Stack Overflow (MSO) Metrics (Table III): The staff of
Stack Overflow provided us with a set of simple textual metrics
currently in use. With such metrics Stack Overflow identifies
the poor quality questions to be manually reviewed.

Most of the metrics are mainly character-based (e.g., Title
Length, Title With Capital Letter, Body Length, and Lowercase
Percentage); exceptions are Emails Count, URLs Count and
Tags Count as they identify emails, urls, and the amount of tags
respectively. Stack Overflow also checks for text speak (e.g.,
‘wats’, ‘doesnt’, ‘afaik’) and emoticons as additional symptoms
of poor quality posts.

Metric Description
Body Length The length in characters of the question, including

source code and HTML tagging.
Emails Count The number of e-mail addresses found in the

question.
Lowercase Percentage The percentage of lowercase characters all over

the question.
Spaces Count The total number of spaces in the question.
Tags Count The number of tags assigned to the question by

the author.
Text Speak Count The number of text speak (e.g.,’doesnt’, ’wat’,

’afaik’, ’rotfl’) found in the question.
Title Body Similarity Textual similarity between title and body.
Title Length The length in characters of the title of the question.
Capital Title 1 if the title begins with a capital letter, 0 other-

wise.
Uppercase Percentage The percentage of uppercase characters all over

the question.
URLs Count The number of URLs found in the question.

TABLE III. Stack Overflow (MSO) Metrics

Readability (MR) Metrics (Table IV): We complement
the Stack Overflow metrics with metrics that capture other
textual features regarding readability. Focusing on the structure
itself, we include in our analysis features like Words Count
and Sentences Count. Another aspect characterizing a Stack
Overflow question is the presence of code. Using the HTML
structure of the posts, we identify the text within tags ¡code¿
to calculate the percentage of lines of code (LOC Percentage)
in the full question’s body.

We introduce Metric Entropy and Average Terms Entropy
as features to evaluate the terms used in the textual part of a
question. Metric Entropy is the Shannon entropy [7] divided
by the length of the text, and represents the randomness of the
information contained in the message. Average Terms Entropy
measures the entropy of each term used in the question’s text,
against all the posts in Stack Overflow. We calculate the entropy
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Metric Description
Average Term Entropy The average entropy of terms in a question, according to the Stack Overflow entropy index we devised. Each term’s entropy is

calculated on the Stack Overflow dataset.
Automated Reading Index 4.71 · ( characters

words ) + 0.5 · ( words
sentences )−21.43

Coleman Liau Index 0.588 ·L−0.296 ·S −15.8 where L = average number of letters per 100 words, S = the average number of sentences per 100 words.
Flesch Kincaid Grade Level 0.39 · ( total words

total sentences ) + 11.8 · ( total syllables
total words )−15.9

Flesch Reading Ease Score 206.835−1.015 · ( total words
total sentences )−84.6 · ( total syllables

total words )
Gunning Fox Index 0.4 · [( words

sentences ) + 100 · ( complex words
words )]

LOC Percentage The percentage of lines of code declared between tags ¡code¿ all over the text of the question.
Metric Entropy ( shannon entropy

body lenght ). It represents the randomness of the information in the question.
Sentences Count Numer of sentences contained in the question, excluding ¡code¿ tags.

SMOG Grade 1.0430 ·
√

polysyllables · ( 30
sentences ) + 3.1291

Words Count The number of words in the questions, excluding ¡code¿ tags.
TABLE IV. Readability (MR) Metrics

Metric Description
Accepted by Originator Votes The number of accepted answer obtained by the user.
Approved Edit Suggestion The number of accepted edit suggestions the user obtained.
Answer Badges Count The number of badges obtained for answers (e.g., Great Answer, Good Answer, Nice Answer).
Badges-Tags Coverage The percentage of tags covered by the badges the user already possess.
Bounty Start Votes The number of votes the user received for having started a bounty (e.g., gift points for the answer she wants).
Bounty End Votes The number of votes the user received for having ended a bounty.
Close Votes The number of close votes the user received by the user for questions asked.
Deletion Votes The number of deletion votes the user received for the questions asked.
Down Votes The overall number of down votes the user received by the community.
Favorite Votes The overall number of favorite votes the user received by the community.
Moderator Review Votes The number of review votes the user received for her questions.
Offensive Votes The overall number of votes the user received for contents considered offensive.
Reopen Votes The number of close votes the user received for her already closed questions.
Question Badges Count The number of badges obtained for questions (e.g., Favorite Question, Stellar Question, Good Question).
Spam Votes The overall number of votes the user received for contents considered spam.
Total Badges The total number of badges the user obtained. It also includes badges for questions and answers.
Undeletion Votes The number of undeletion votes the user received for her already deleted questions.
Up Votes The overall number of up votes the user received by the community.

TABLE V. Popularity (MP) Metrics

for each term in the Stack Overflow data dump of September
2013 and we calculate the average of the entropy of each term
used in the question’s text. As we did in our previous work
[19], the entropy value describes the discriminating power of
a word, therefore the lower the average of terms’ entropy, the
higher the use of uncommon terms.

To assess the question readability, we also compute six
standardized readability indexes: Automated Reading Index [20],
Flesch Kincaid Grade Level [10], Coleman Liau Index [5],
SMOG Grade [17], Gunning Fox Index [12], and Flesch
Reading Ease Score [10]. These represent the comprehension
difficulty when reading a passage in English and are different
approximations and representations of the U.S. grade level6
needed to comprehend the text. We argue that a lower readability
could be a symptom of a poor quality question. To calculate
these indexes we first remove code snippets from the question’s
body. We use the Stanford NLP Parser7 to extract sentences
and words, and TeX hyphenation [16] to obtain syllables.

Popularity (MP) Metrics (Table V): We also devise
non-textual features to model the author writing the question.
Analogously to MS O and MR metric sets, we require a snapshot
of the status of authors when they created the question. The
official data dump only reports the latest users’ reputation
levels (i.e., computed in September 2013), thus we estimate
Stack Overflow users reputation8 by considering votes and
badges received. The data dump provides all the votes a user
received and the date when they were given. Representing the

6http://en.wikipedia.org/wiki/Grade levels
7http://nlp.stanford.edu/software/index.shtml
8http://meta.stackoverflow.com/questions/7237/how-does-reputation-work

snapshot of the author’s reputation at question-creation time
requires to filter out votes and badges received after the question
creation date. We consider three metrics: Badged Answer Count,
Badges Question Count, and Badges-Tags Coverage. The first
two represent the badges received concerning question (e.g.,
‘Favorite Question’ and ‘Stellar Question’) and answers (e.g.,
‘Great Answer’ and ‘Good Answer’), while the latter refers
to the coverage of author’s badges with respect to the tags
assigned by the author to the new question.

V. Data Analysis

In the previous sections, we discussed how to define the
quality of a question in SO and we identified the features of
a question and its author likely correlate with quality. In this
section, we investigate such correlations through two empirical
studies:

1) In Section V-A, we use machine learning, and in particular
decision trees, to classify a question’s quality using
different combinations of metrics.

2) In Section V-B, we adopt a simpler approach that uses
genetic algorithms to train a linear function expressing a
measure of a question’s quality, and then we investigate
how such a measure can be used to perform more precise
predictions on a question’s quality.

A. Classification with Decision Trees

The first experiment we conducted involves the use of a
simple machine learning algorithm to classify the quality of a
question as bad or good, as defined in Section III.
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Considering the objective of our research, we want not only
to predict the quality of a new question, but also to understand
which classes of metrics influence the quality of a question. For
this reason, we chose Decision Trees [24], a machine learning
algorithm whose output can be easily interpreted. We conducted
the experiments by considering all the different combinations
of metric sets, to understand which ones give better precision
in terms of identifying the quality of a submitted question.

A decision tree is a tree in which each internal node (non-
leaf) is labeled with a feature, and arcs from any internal node
are labeled with exclusive predicates that summarize possible
distinct values for the feature. Finally, each leaf of the tree
is labeled with a class. In Figure 2 we show a portion of a
decision tree trained on T4 using popularity metrics (MP) as
an example.

Question 
Badges

Accepted by 
Originator

Close 
Votes

G B

> 0< 0

> 0< 0

Close 
Votes

Close 
Votes

< 0 > 0

Favorite 
Votes B

> 0

B

> 0

Approved Edit 
Suggestion

< 0< 0

... ... ...

> 0< 0 > 0

G

< 0

Fig. 2. Portion of a Decision Tree trained on T4 and MP

As we can see, in our case, the features are question metrics,
and the class represents the quality to be assigned to the posts
exhibiting the conjunction of predicates represented by arcs
connecting the root to the leaf.

We trained decision trees on the largest datasets T2 and T4,
considering a minimal amount of 50 posts per leaf and 0.25
confidence value. We performed 10-fold cross validation.

Results. Table VI shows the results of the first experiment
on the two data sets (T2 and T4) that correspond to the different
definitions of quality we identified (see Section III).

Dataset Metrics Pg Pb Average
ROC

T2

MSO 62.9% 62.1% 0.667
MR 66.8% 62.1% 0.676
MP 74.3% 73.2% 0.795
MSO ∪MR 66.3% 64.1% 0.702
MSO ∪MP 74.0% 74.5% 0.808
MR ∪MP 76.0% 75.1% 0.824
MSO ∪MR ∪MP 76.2% 75.2% 0.829

T4

MSO 61.2% 61.7% 0.655
MR 62.9% 61.1% 0.653
MP 73.0% 69.7% 0.734
MSO ∪MR 63.3% 62.8% 0.676
MSO ∪MP 72.7% 71.6% 0.780
MR ∪MP 73.3% 71.9% 0.788
MSO ∪MR ∪MP 73.2% 72.0% 0.789

TABLE VI. Classification Results using Decision Trees

In both cases, considering a single set of metrics, popularity
metrics (MP) give the best results in terms of precision to

identify both good and bad posts. The set of metrics considered
by SO (MSO) perform worse than readability metrics, and
may also introduce noise in the classification: When combined
with popularity metrics or readability metrics, it may actually
decrease prediction precision. The combination of all the
three sets of metrics does not significantly increase prediction
performance compared to popularity metrics alone. This reveals
that the popularity of the author is more important than textual
features to determine the quality of a new question.

We interpret this fact as follows. First, a question’s quality,
in terms of how the crowd will react to it, is inherently related
more to the semantics and intention of a question than the
textual way it is formulated. Second, the history of a users’
interaction with the community, which determined their actual
reputation, will determine the quality of questions that they will
ask in the future or, at least, will provide some bias towards
this author by the community (in particular if we consider
that moderators are elected by the crowd). This insight makes
the interaction between authors and the community a notable
component for predictions about a question’s quality.

Java Subset. The overall level of precision reached by
decision trees is relatively unsatisfactory for an automated
process aimed at discarding bad questions, and in particular in
the ideal dataset T4. Given these results, we considered that
questions about programming languages could be less noisy
and better classifiable in terms of quality. We constructed a
subset of T4 containing only questions about the most popular
programming language, Java, and we ran again the decision tree
learning algorithm. Table VII shows the classification results
for this subset. The results are only moderately better, leading
us to the conclusion that it is not so much about what is being
discussed, but by whom things are being discussed.

Dataset Metrics PG PB Average ROC

TJava

MSO 62.1% 61.7% 0.662
MR 63.8% 62.9% 0.672
MP 76.3% 77.0% 0.805
MSO ∪MR 64.6% 64.3% 0.697
MSO ∪MP 75.3% 75.5% 0.817
MR ∪MP 76.9% 75.9% 0.818
MSO ∪MR ∪MP 76.3% 76.4% 0.823

TABLE VII. Classification Results using Decision Trees only on Java
questions

Leaf Inspection. The inspection of the learned decision
trees gives other important and detailed insights on which
metrics influence the most the quality of questions, and suggests
a different way to approach the problem of quality prediction.
Each leaf on the learned decision tree is linked to a particular
decision on the classification of a question’s quality, i.e., either
good or bad. When a decision tree is trained and tested against
a given data set, the learning algorithm also outputs the amount
of data associated with a specific leaf, and the number of
misclassified elements. Even if the overall precision of the
decision tree is low, some leaves may exhibit a precision value
that is particularly high, thus disclosing metrics more related
to a particular quality class.

Table VIII shows examples of leaves on the decision trees
that can correctly predict good or bad quality posts on subsets
of data larger than 1% of the original dataset, having a precision
greater than 75%. Nevertheless, the leaves that classify posts
in such way are quite uncommon. Popularity metrics provide
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Dataset Decision Tree Leaf Metric Set Size Perc. Class Precision

T2

QuestionBadges = 0 ∧ CloseVotes > 0 MP 13,033 9.9% D 85.9%
QuestionBadges > 0 ∧ CloseVotes = 0 MP 17,480 13.2% A 85.2%
QuestionBadges = 0 ∧ itCloseVotes = 0 ∧ AcceptedByOriginatorVotes > 0
∧ ApprovedEditSuggestion = 0 MP 28,091 21.1% A 75.4%

QuestionBadges = 0 ∧CloseVotes = 0 ∧ AcceptedByOriginatorVotes > 0
∧ ApprovedEditSuggestion = 0 ∧LOCPercentage > 0.017705 MP ∪MR 12,538 9.4% A 88.7%

T4

QuestionBadges = 0 ∧ CloseVotes > 0 MP 14,258 5.4% C+D 81.2%
QuestionBadges > 0 ∧ CloseVotes = 0 MP 26,426 10.0% A+B 83.9%
QuestionBadges = 0 ∧CloseVotes = 0 ∧ AcceptedByOriginatorVotes > 0
∧ ApprovedEditSuggestion = 0 MP 46,655 17.7% A+B 76.7%
QuestionBadges = 0 ∧ AcceptedByOriginatorVotes = 0 ∧ ClosedVotes = 0
∧ FavoriteVotes = 0 ∧wordsCount ≤ 64 ∧ totalBadges ≤ 1 MS O ∪MR ∪MP 33,879 12.9% C+D 78.2%

TABLE VIII. Relevant Leaves on Learned Decision Trees

very good predictive performance even in this case, and we
can mine the historical characteristics of users that influence
future questions quality.

Consider, for example, the decision tree trained on dataset
T4 using popularity metrics. The precision PB to predict bad
posts is as low as 73%. If we inspect the decision tree, we
can see that on a subset of the data made of 14,258 questions
(corresponding to 5.4% of T4), the decision tree can correctly
predict that 81.2% of them is bad with only 770 misclassified
questions. This subset corresponds to a specific leaf of the
decision tree, predicting bad quality questions candidates if a
user has received no badges for questions, and has received a
certain number of question closure votes. We also learn that
if a user has instead received question badges but no closure
votes, then her question will likely be of good quality, with a
precision of 83.9%.

From the same decision tree, we also discover a very
interesting leaf concerning bad quality posts. When a user
obtained no question badges, neither close votes nor favorite
votes, has no accepted answer in her history, possesses one
badge at most, and asks a question of less than 64 words,
it is likely to be a bad quality question with a precision of
78% on the 12.9% of the overall data in T4. This finding
remarks how the interaction of the user with the community
matters and influences questions’ quality estimation by the
crowd. Indeed, some examples of users matching this leaf would
be newcomers who have never interacted with the community,
or people who provided neither notable questions (i.e., no
favorite votes, no question badges) nor accepted answers (i.e.,
no accepted by originator), thus interacting not successfully
with the community.

B. Linear Quality Function Classification

Given the limitations of the predictive performance of
decision trees, and the fact that the analysis of leaves led
to limited insights about what distinguishes good from bad
questions, we decided to adopt a different approach for the
classification of question quality, based on linear quality
functions.

Intuitively, a quality function assigns a value to a post based
on a given set of metrics. A quality function should assign
a negative value to bad posts and a positive value to good
posts. One of the benefits of such an approach to classification
is that the predicted quality is not binary, but has a range
and can therefore express intermediate levels of quality. To
learn a quality function for a given metric set, we used genetic

algorithms. A genetic algorithm [11] is a search algorithm
inspired by the process of natural selection; we exploit such a
search approach to find a set of coefficients of a quality linear
function given a metric set and a training dataset.

In a genetic algorithm, possible candidate solutions (in-
dividuals) are evolved towards better solutions that tend to
maximize a given fitness function. A candidate solution (i.e., a
gene) is composed of a set of properties (i.e., its chromosomes)
that are mutated and altered during the process of evolution.
Evolution starts from a set of randomly generated individuals,
and proceeds by modifying a generation of individuals through
subsequent iterations. At the beginning of each iterative process,
the fitness of individuals of a generation is evaluated. Usually,
the fittest individuals are selected from the population, and
randomly mutated or recombined to form a new generation,
i.e., to produce a new set of individuals for the next iteration.
The algorithm stops when a pre-defined value of fitness for
the best individual is found, or when a maximum number of
generations has been produced. Overall, a genetic algorithm
requires a definition of individuals through their chromosomes
and a fitness function. Since we want to search for a linear
quality function, we implemented the evolutionary search as
follows:

• The chromosome of an individual is a set of coefficients,
one for each metric in the considered metric set, ranging
in the [−1,+1] interval.

• The fitness function is determined from the number of
posts in the training set that are correctly classified, i.e.,
the posts for which the quality function outputs a negative
value for a bad post and vice-versa. In other words, the
fitness function is the classification precision on a given
training set.

We implemented the evolutionary search by using an open
source framework called JGAP.9

The fitness function evaluation is relatively costly, and
depends on the size of the training set. Since each individual
must be checked against the whole training set at each
generation, it is impossible to search for quality functions using
T2 and T4 as datasets, since they are too big. For these reasons,
we used the smaller datasets T1 and T3 to train quality functions.
We trained the genetic algorithm by using a population size of
64 individuals for 20 generations, and we constructed a quality
function for each distinct set of metrics.

Results. Table IX summarizes the classification results for

9http://jgap.sf.net
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Metrics Top-3 FeaturesG wG Top-3 FeaturesB wB Neutral wN
Trained on T1, tested on T2

MS O

Tags Count 0.75 Text Speak Count -0.99 Uppercase Percentage -0.17
Title Length 0.72 Body Length -0.93 Title-Body Similarity -0.15
Spaces Count 0.39 Lowercase Percentage -0.82 URLs Count 0.11

MR

LOC Percentage 0.92 Gunning Fox Index -0.87 Automated Reading Index -0.19
Coleman-Liau Index 0.88 Flesch Reading Ease Score -0.54 Flesch Kincaid Grade Level 0.44
Words Count 0.83 Sentences Count -0.49 SMOG Index 0.45

MP

Favorite Votes 0.83 Approved Edit Suggestion -0.91 Total Badges -0.02
Down Votes 0.74 Moderator Review Votes -0.90 Bounty Start Votes 0.02
Accepted By Originator Votes 0.50 Spam Votes -0.84 Badges-Tags Coverage 0.03

Trained on T3, tested on T4

MS O

URLs Count 0.93 Text Speak Count -0.98 Title With Capital Letter 0.17
Body Length 0.90 Uppercase Percentage -0.67 Emails Count 0.32
Title Length 0.84 Title-Body Similarity -0.46 Tags Count 0.36

MR

LOC Percentage 0.98 Coleman Liau Index -0.74 Flesch Kincaid Grade Level -0.09
Average Term Entropy 0.33 Sentences Count -0.69 Flesch Reading Ease Score -0.07
Automated Reading Index 0.33 Gunning Fox Index -0.61 SMOG Index 0.14

MP

Accepted By Originator Votes 0.98 Favorite Votes -0.22 Total Badges -0.02
Offensive Votes 0.97 Approved Edit Suggestion -0.15 Up Votes -0.02
Down Votes 0.93 Moderator Review Votes -0.06 Close Votes 0.00

TABLE X. Quality FunctionsMetricWeights

Metrics Quantile Left PB Right PG
Tail Tail

Trained on T1, Tested on T2

MSO

0.25 34,718 62.0% 34,106 58.3%
0.10 14615 67.2% 14,466 58.2%
0.05 7,341 69.5% 7,288 60.0%
0.01 1,364 77.0% 1,740 57.4%

MR

0.25 30,912 64.2% 39,528 61.9%
0.10 11,906 64.2% 16,270 49.0%
0.05 5,896 64.7% 8,091 39.1%
0.01 1,237 66.9% 1,625 30.2%

MP

0.25 46,016 68.4% 25,841 85%
0.10 17,542 74.1% 11,474 88.3%
0.05 8,495 78.2% 6,931 89.5%
0.01 1,718 81.0% 2,251 90.1%

Trained on T3, Tested on T4

MSO

0.25 63,944 61.9% 66,888 59.2%
0.10 25,114 66.6% 26,081 60.8%
0.05 11,984 69.0% 12,781 60.4%
0.01 2,291 73.8% 2,487 58.6%

MR

0.25 61,630 62.8% 69,679 50.3%
0.10 23229 63.5% 28,381 40.0%
0.05 11,696 63.1% 14,421 34.9%
0.01 2,338 61.7% 2,772 30.52%

MP

0.25 63,152 64.7% 69,542 68.9%
0.10 21,987 70.4% 24,350 70.9%
0.05 10,480 71.3% 11,054 73.3%
0.01 1,787 71.3% 1,661 90.8%

TABLE IX. Classification Results using Quality Functions

quality functions. After training the quality functions on T1
and T3, we tested their predictive performance on T2 and T4,
respectively. With quality functions, we can easily identify
questions with very high or very low predicted quality. We
consider the distribution of qualities as evaluated on the training
set as reference, and we calculate 4 different quantile values,
of decreasing size, corresponding to the left and right tail of
the distribution. Then we project the quantile values on the
testing set and we consider the projected left and right tails,
on which we calculate corresponding precisions, respectively
PB and PG on Table IX. Even in the case of quality functions,
popularity metrics exhibit the highest precision on the testing
sets. However, on the noisy dataset, and considering the smallest
quantile size, the metrics on use at SO could predict bad posts
with a slightly higher precision compared to popularity metrics
(73.8% vs 71.3%).

To get a rough overview of how the classification function
behaves over the quantiles we have depicted in Figure 3 the
percentage of bad (orange) vs. good classified questions (blue).

Fig. 3. Overall classification trend over quantiles, trained on T1 and tested
on T2 using MP.

On the left side the questions classified as bad are predominant,
while on the right side there is a steep increase of questions
classified as good. This trend reflects the data reported in
Table X, where for MP we obtain a precision of 68.4% on the
left 0.25 quantile (bad tail), while we have a precision of 85%
on the right 0.25 quantile (good tail).

Learned Quality Function Inspection. The structure of
learned quality function reveals important insights about the
metrics to determine good or bad quality of posts. Table X
shows, for each learned quality function on a given training
set, the role of each metric. In particular:

• Each coefficient with a strong positive value, close to 1,
contributes to increase a question’s quality.

• Each coefficient with a strong negative value, close to -1,
negatively contributes to a question’s quality.

• Each coefficient with a value close to 0 essentially does
not contribute to determine quality.

Although the generalizability of the results can be ques-
tioned, the following findings emerge:

• For both datasets, the number of down votes received by a
user is a strong component of quality. Essentially, if users
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have received a significant amount of down votes, they
will be more likely to formulate good quality questions
to improve their reputation.

• Another strong component of high quality is having
answers that have been accepted by the originator user.
In other words, having produced very good answers in
the past has impact on producing good questions in the
future.

• On the contrary, up votes received on the past do not
influence quality. This is counterintuitive; intuitively, it
means that the fact that users performed well in terms
of questions that the crowd appreciated does not have an
impact on the quality of their future questions;

• A good tagging of code elements in a question determines
high quality. We expected this, for a Q&A website like
SO.

• Text speak determines bad quality. Moreover, a low number
of sentences in the question negatively influences quality.

The following characteristics influence one of the quality
functions in the two data sets and become irrelevant on the
other one:

• The number of urls in a post seem to be related to high
quality (wG = 0.93) post in the noisy data set, but the
contribution is only minimal (wN = 0.11) on the ideal
dataset T2.

A few metrics are related in completely opposite way to a
post’s quality if we consider the more noisy dataset T4 instead of
T2 where the quality classes are clearly separated. In particular:

• Favorite votes received by a user seem to be a strong
component to determine high quality posts (wG = 0.83),
while instead it is a relatively strong component for bad
quality (wB = −0.22) in the noisy dataset. This means that
users that received favorite votes are somehow prone to
produce high quality questions but also a great number
of questions that are not to be deleted, but receive, on
average, negative scores.

• Word count seems to characterize very good posts (wG =
0.83), but when intermediate quality questions are added
in the data set, a high number of words determines bad
quality, even if not strongly (wB = −0.44, value not shown
in Table X).

• On the opposite side, body length relates to very bad
quality (wB = −0.93) on T2, but with strong quality (wG =
0.90) on the noisy dataset T4.

Interaction between Metric Sets. Each quality function,
associated with a given metric set, shows a relatively good
predictive performance, which varies considering the dimension
of the quantile to identify individuals with very low or very
high quality. We manually inspected the smaller quantiles for
each metrics set and we noted that each set contained questions
with different features that would classify them as good or bad,
as expected. In other words, each metric set captures different
characteristics of a question quality and of the user who posted
it, and it is reasonable to expect that we can achieve better
precision by identifying questions who have very good or very
bad values for quality functions of more than one set of metrics.
A possible approach to investigate would be to train genetic
algorithms with bigger chromosomes (corresponding to larger

sets of metrics); however, this would be relatively expensive,
and might introduce classification noise. While such a method
might be worth investigating, in the scope of this paper, we
prefer to try a simpler, and hopefully more effective approach,
to combine predictions of quality functions.

We considered a larger set of quantile sizes with respect
to Table IX, and we studied the prediction precision of
intersections of such quantiles, which correspond to posts
which show very good or very bad quality as predicted by
more than one quality function associated to a metric set. We
obtained a large set of possible predictive models based on
such intersections, which are summarized in Table XI.

Each combination of quantile sizes identifies a different
set of questions, and with decreasing size of such set one can
achieve better precision. It is an expected trade-off between an
identified set of questions and the precision to be obtained. In
Table XI we present models with top precision in three different
range sizes, from around 1% to 20% of original testing set.
We can achieve very high precisions on the intersections of
tails. On separated dataset T2, we can reach precisions as high
as 97.4% to identify good questions, and as high as 89.2%
to identify bad questions. On the noisy dataset T4, precision
reaches values around 80% for both good and bad questions
on smaller portions of the testing set.

Class Size Quantile Intersection Size P
Range MSO MR MP

Trained on T1, Tested on T2

D

10-20% 0.5 0.5 0.5 22063 80.4%
– 0.5 0.2 16808 81.0%

5-10% – 0.25 0.2 8532 81.5%
0.25 0.5 0.5 12303 83.5%

1-5% 0.1 0.5 0.5 5447 85.7%
0.05 0.2 0.5 1341 89.2%

A

10-20% – 0.5 0.25 15759 91.3%
– 0.25 0.5 16729 88.9%

5-10% – 0.25 0.25 8293 95.8%
– 0.25 0.2 6752 96.1%

1-5% – 0.25 0.1 3954 96.7%
0.5 0.25 0.05 1544 97.4%

Trained on T3, Tested on T4

C+D

10-20% 0.5 0.5 0.5 26987 76.4%
0.5 0.25 0.5 43006 74.3%

5-10% 0.2 0.25 0.5 14695 78.4%
0.25 0.5 0.5 24256 76.9%

1-5% 0.05 0.2 0.5 3965 81.4%
0.1 0.2 0.5 7255 80.0%

A+B

10-20% – 0.5 0.2 31694 74.4%
– 0.5 0.25 40060 74.3%

5-10% 0.25 0.5 0.25 14286 79.2%
0.5 0.5 0.25 25712 77.6%

1-5% 0.25 0.5 0.05 2916 83.2%
0.5 0.25 0.05 4948 81.6%

TABLE XI. Quantile IntersectionModels

VI. Discussion

We defined more than 40 metrics that capture different
aspects of a question at its initial stage. We classified these
metrics in three distinct sets concerning (i) readability metrics,
(ii) author’s popularity, and (iii) simple textual features in use
at Stack Overflow.

Decision Trees. Initially, we adopted decision trees, a ma-
chine learning approach whose output can be easily interpreted,
and we considered two possible datasets: an ideal one, where
we selected only posts with very low or very high quality,
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and a noisy one. Results of classification with decision trees
exhibited poor predictive power: slightly better than a coin-
flip. Inspection of decision tree leaves gave us preliminary
insights on which metrics influence the quality of significant
sets of questions. Overall, the author’s popularity metrics better
discriminated bad and good posts than the other two sets of
metrics, reaching a precision above 70%. According to the
public data dump of September 2013, about 6,000 questions
are asked every day. A precision of 70% would lead to many
misclassified questions to be reviewed that do not need to be
closed or deleted from Stack Overflow.

Quality Functions. We considered a linear quality function-
based model for each set of metrics and we trained the
weights by means of a genetic algorithm. The linear model was
built to classify poor quality questions with negative values,
and high quality questions with positive values. The models
obtained could not correctly classify bad and good questions
in general, thus we measured the precision of the classification
for questions residing in the tails, that is, the more positive and
the more negative value ranges. To this end, we trained our
linear model on a subset of 20,000 questions (with balanced
bad and good posts) and we tested it against a balanced testing
set. To verify the precision of the classification of questions
lying in the tails, we adopted two approaches:

1) We took every metric set and we verified the precision in
classifying the elements in the tails, by choosing different
sizes for each of them (i.e., 1%, 5%, 10%, and 25%). In
the ideal data set, the model trained on popularity metrics
was able to correctly classify from 85% questions out of
25,841 good posts lying on a bigger tail and up to 90.1%
questions out of a tail containing 2,251 posts. On the other
hand, the same model correctly classified from 68.4% bad
questions out of a tail of 46,016 questions and up to 81.0%
bad questions out of a tail of 1,718 questions. Results on
the noisy dataset were worse but proportionally similar.
While metrics in use at Stack Overflow performed badly,
readability metrics seemed to slightly better classify bad
questions with a precision of 73.8% on a set of 2,291 posts.

2) We inspected the coefficients of quality functions and
obtained insights about which metrics influence good and
bad qualities of posts. For example, we found that users
who received down votes in the past are more prone to post
high quality questions in the future, probably to raise their
reputation.

3) By looking at the intersection of the posts classified by
each metrics set, we noticed that each set seems to identify
different types of bad and good posts. For this reason, we
verified the precision of the intersection of these models by
varying and mixing the tail sizes (e.g., 50% popularity
metrics, 10% readability metrics, 10% Stack Overflow
metrics). With this approach, the best model was able to
correctly classify 96.2% out of 2,464 good posts and 74%
out of 2,230 bad posts. We also identified a model that
improves the classification of bad posts up to 85% out of
1,194 questions.

An important insight we derived from the classification
models above is that author’s popularity metrics are the most
effective feature in deciding if a post is of a good quality or
not. If we consider that reviewers are users selected inside the
community, then having prominence on the popularity of an

author matches the organizational behavior of the community
itself. Last but not least, the prediction power given by
author’s popularity can be complemented by taking into account
structural properties of the posts given by the other two sets
of metrics.

A. Threats to Validity

Construct Validity Threats to construct validity are con-
cerned with whether what one measures is what one intends
to measure. In our case, there could be several reasons why
the considered quality of the questions is incorrect. We rely on
the judgement of the SO crowd to differentiate the quality of
questions, which is a potentially error-prone process. In fact, the
perceived quality might be different from person to person, and
might be based on different definitions. This issue is alleviated
by the fact that we also manually examined more than 100
questions not only to get insights on their features, but also to
verify whether the choices made by the users were reasonable.
Moreover, Stack Overflow relies on the same criteria.

Another issue regarding quality is the definition of the class
A in our dataset (Table I): ‘very good’ questions. We defined
‘very good’ questions as those with a Stack Overflow score
higher than 7. We chose this threshold to obtain balanced
datasets, and as a reasonable trade-off between choosing a
too high value (which would have only included questions
regarding trending topics) and a very low one (which would
have included questions only inspected by few users).

Finally, the choice of balanced dataset could have impacted
the results of the machine learning models. Nevertheless, this
should not be a problem when enough training data is available.

Statistical Conclusion threats concern the fact that the
data is enough to support claims. We considered statistically
significant samples in our experiments; this was possible
because we relied on the crowd assessment and not on manual
inspections of questions.

External Validity threats are concerned with the generaliz-
ability of results. The approaches we tried may show different
results when applied to a Q&A website other than Stack
Overflow. To alleviate this issue, we chose to include questions
related to any valid topic in the technical forum, thus including
a very large population. An evaluation of our approach that
involves other Q&A websites could measure the effect of this
threat.

VII. Conclusion

Understanding and classifying question quality is essential
to maintain a good user experience of Q&A services. In
particular, it is fundamental to filter out poor quality questions
that may hinder the value of an important resource like a
Q&A service. In fact, an automatic classifier of question
quality could improve, and in some cases even replace, manual
review processes like the ones nowadays implemented in Stack
Overflow.

We devised, implemented and illustrated an approach to
classify question quality, and in the same way understand what
fundamentally influences and characterizes it. We devised three
sets of metrics that capture both textual features of a question
and the reputation of the user who asked it. Together with these
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metrics, we constructed two datasets from a Stack Overflow
data dump which captured what the community identifies as a
question’s quality. We began by devising two types of quality
for a question in Stack Overflow (i.e., ‘Good Quality’, ‘Bad
Quality’) and we then extended our definition to four level
of quality (i.e., ‘Very Good’, ‘Good’, ‘Bad’, ‘Very Bad’), by
imposing some empirical thresholds, based on data balancing.

We also conducted a twofold empirical study aimed at
classifying Stack Overflow questions’ quality and understand
how the metrics we devised influence it. In the first part, we
used a machine learning algorithm to infer decision trees.
While the predictive power of such artifacts was relatively
poor, we discovered that metrics expressing author’s popularity
are best predictors of a question’s quality. In the second part,
we used genetic algorithms to learn linear quality functions that
describe a question’s quality. We encoded quality as a function
classifying bad quality questions with negative values, and
high quality questions with positive values, thus representing
different shades of quality where the extremes represent very
bad and very good levels. By analyzing the tails of such quality
functions, and in particular intersections of them, we were able
to

1) reach prediction results that can be beneficial for an
automatic quality classification approach, and

2) confirm that popularity metrics are the best predictors, and
identify which specific metrics strongly influence good or
bad quality.
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