
StORMeD: Stack Overflow Ready Made Data
Luca Ponzanelli, Andrea Mocci, Michele Lanza

REVEAL @ Faculty of Informatics, University of Lugano, Switzerland

Abstract—Stack Overflow is the de facto Question and Answer
(Q&A) website for developers, and it has been used in many
approaches by software engineering researchers to mine useful
data. However, the contents of a Stack Overflow discussion are
inherently heterogeneous, mixing natural language, source code,
stack traces and configuration files in XML or JSON format.

We constructed a full island grammar capable of modeling
the set of 700,000 Stack Overflow discussions talking about Java,
building a heterogeneous abstract syntax tree (H-AST) of each
post (question, answer or comment) in a discussion. The resulting
dataset models every Stack Overflow discussion, providing a full
H-AST for each type of structured fragment (i.e., JSON, XML,
Java, Stack traces), and complementing this information with
a set of basic meta-information like term frequency to enable
natural language analyses. Our dataset allows the end-user to
perform combined analyses of the Stack Overflow by visiting the
H-AST of a discussion.

I. INTRODUCTION

Among the different sources of information available online,
Q&A websites have gained a prominent role in the daily
working life of developers [1]. The archetypal example is
Stack Overflow, where more than 6,000 questions are asked
every day [2], providing “archives with millions of entries
that contribute to the body of knowledge in software de-
velopment” [3]. Indeed, according to the last data dump of
September 20141, Stack Overflow relies on a community
counting 3.5M users, who produced about 8M posts, out of
which 700K2 questions and 1.35M related answers concern
the Java language.

This considerable amount of data attracted the interests of
researchers in the last years. It is possible to find discussions
on Stack Overflow collecting various studies performed on the
various data dumps provided by Stack Exchange3. In many
cases, the phase of mining Stack Overflow resulted to be the
fundamental part for studies concerning, for example, recom-
mender systems [4], [5], [6], extraction of code in informal
documentation [7], post quality modeling and analysis [2], [8],
[9], or to understand how developers use APIs [10], [11].

A fundamental aspect of any mining approach involving
Stack Overflow posts concerns the intrinsic heterogeneity of
the data: Posts are composed of both unstructured fragments
representing the natural language part of the discussion, and
structured fragments representing (e.g., Java code, XML,
JSON), both co-existing in the same artifact. Separating these
elements from each other is a necessary step to perform
targeted analyses on quality data. Rigby et al. [7] exploit

1https://archive.org/details/stackexchange
2after removing posts without owner defined
3http://goo.gl/nen09t

regular expressions to isolate and extract a set of Java con-
structs of interests (i.e., method chains), which is conceptually
similar to the source model construction of the reflexion model
approach [12]. Alternatively, Bacchelli et al. [13] defined
an island grammar [14] capable of identifying and parsing
Java constructs and stack traces, separating them from natural
language narrative.

However, the pure extraction of constructs of interest from
natural language leaves a conceptual “hole” in the process.
For example, an analysis can focus on identifying relationships
between XML configuration files (e.g., for the Android plat-
form) and code samples, but after the extraction of structured
fragments, the data comes still in the form of text. The
next step is thus to model the extracted information and
discover the semantic links among these elements to actually
perform the specific analysis. In any case, and especially when
the analysis involves code fragments, modeling requires full-
fledged parsing of the structured fragments to reconstruct an
AST, which must be done subsequently and separately. For
example, a Java class fragment in a discussion does not provide
direct information about its method invocations, but it rather
requires additional parsing to extract this information.

In this data paper, we alleviate this burden by providing
an already modeled dataset of Stack Overflow discussions. In
particular, we fully exploit island parsing not only for fragment
extraction but also for constructing a heterogeneous abstract
syntax tree (H-AST), whose nodes model the contents of a
Stack Overflow discussions according to the kind of struc-
tured fragment it represents. The dedicated island grammar
to extract and construct the H-AST all the Stack Overflow
discussions tagged with the <java> tag. The H-AST includes
the following possible structured fragments:

• Java constructs, including incomplete fragments like
method and class declarations lacking the body;

• Stack traces and incomplete stack trace lines;
• XML/HTML documents, tags and elements;
• JSON fragments.

Moreover, our dataset contains already available meta-
information for common analyses, like term frequency (tf)
data, variable names, and mentioned reference types.

The dataset, named StORMeD, is provided as a set of
JSON files, one for each discussion, in both pretty-printed
and compact form. Moreover, we also include a documented
Scala API that can be used to parse the JSON files and obtain
objects corresponding to the HAST, that can be visited and
processed to implement the desired analysis.

https://archive.org/details/stackexchange
http://goo.gl/nen09t

II. DATASET CONSTRUCTION

To create StORMeD, we rely on the Stack Overflow data
dump of September 2014. We focus on the discussions tar-
geting Java-related topics, and thus we focus on the 708K
discussions tagged with the <java> tag.

A. Island Grammars and Parsing

Figure 1 show an example of a discussion. Each Stack
Overflow discussion is stored as a sequence of HTML ele-
ments, each one identifying an information unit. The HTML
tagging is performed by the authors and eventually modified
by the crowd. Information units tagged with <p> (and other
similar tags) mainly contain narrative, while the ones tagged
with <code> should contain structured fragments, e.g., Java
snippets. However, users often tag with <code> arbitrary
contents, e.g., error messages like in Figure 1. Thus, units
tagged with <code> may contain narrative. We decided to
apply island parsing in both cases to reconstruct the H-AST.

I am migrating from xml based spring configuration to "class" based
configuration using the corresponding @Configuration annotation.

I came across the following problem: I want to create a new bean, which
has a reference to another (service) bean. Therefore I autowired this class
to set this reference during bean creation. My configuration class looks as
follows:

@Configuration
@ComponentScan(basePackages = {"com.akme"})
public class ApplicationContext {

 @Resource
 private StorageManagerBean storageManagerBean;

 @Bean(name = "/storageManager")
 public HessianServiceExporter storageManager() {
 HessianServiceExporter hessianServiceExporter =
 new HessianServiceExporter();
 hessianServiceExporter.setServiceInterface(StorageManager.class);
 hessianServiceExporter.setService(storageManagerBean);
 return hessianServiceExporter;
 }
}

But this doesn't work, because the causes a
BeanNotOfRequiredTypeException exception during startup.

Bean%named%'storageManagerBean'%must%be%of%type%
[com.akme.StorageManagerBean],%but%was%actually%of%type%
[com.sun.proxy.$Proxy20]

The StorageManagerBean is annotated with an @Service annotation. And
the xml based configuration worked as expected:

<bean name="/storageManager"
 class="org.springframework.remoting.caucho.HessianServiceExporter">
 <property name="service" ref="storageManagerBean"/>
 <property name="serviceInterface" value="com.akme.StorageManager"/>
</bean>

<p>
<code>

<p>
<code>

<p>
<p>

<code>

Fig. 1. Example of Stack Overflow question with HTML tagging.

Island grammars are grammars that contain detailed rules
describing the constructs of interest (the islands), and generic
productions that capture the remainder (the water), in our case
the natural language narrative [14]. We extend the approach

by Bacchelli et al. [13] by implementing an island grammar
able to parse not only Java and stack traces, but also XML
and JSON fragments, which we found frequently appearing in
Java related discussions. We ran the island parser on each
discussion, composed of posts (questions or answers) and
comments to construct a H-AST. Parsing happens in two steps.

First, we parse the post representation using HTML tag
rules to extract the information units. We keep track of the
human tagging and we generalize the tagged contents to two
different types of information units:

• Text Unit: Whatever is not tagged as <code> at the top
level, like textual decorations (e.g., , <hr>), lists
(e.g., ,), paragraph (i.e., <p>).

• Structured Fragment Unit: Every contents tagged as
<code> at the top level. It exposes a H-AST node
modeling the island identified by the parser.

The second phase concerns the effective use of the het-
erogenous island grammar. Once we identified the units we
run the the island parser to identify the constructs of interest.
In the case of a textual fragment, the goal is to identify likely
short fragments of non textual information. For example, the
user can refer to a method invocation or a type, and we are
able to capture this information by using island parsing. When
it comes to structured fragments, the process is similar. We
perform a full parsing of the contents and we collect all the
identified constructs in a H-AST island node.

B. Strict Parsing

In Stack Overflow, all structured constructs are essentially
immersed in natural language. Thus, we need to reduce as
much as possible possible ambiguities. When considering the
Java language, constructs like class declarations or method
declarations are easily separable from the natural language.
However, when we want a finer granularity of the constructs
and extract (e.g., method invocations, qualified identifiers, or
class mentions), ambiguity increases. Consider method invoca-
tions: If we follow the Java language grammar, thus admitting
spaces between tokens, the island parser would extract from
the string “the list (1,2,3) is a list of integer” the invocation
list(1,2,3). To avoid this problem, we require the absence of
spaces between the method name and the parenthesis.

Similarly, we exploit naming conventions to extract likely
mentions of classes, using some heuristics to solve ambigui-
ties. For example, if the mention is not qualified (i.e.,, without
the package location), we require two camel case instances
(e.g., ArrayList) to avoid extracting all words starting with
uppercase in the narrative. However, if the mention is qualified
(e.g., java.lang.String) we relax the camel case constraint but
we ensure that the identifiers have no spaces (e.g., “... package.
This is”). Finally, we relax the constraint if the likely class has
a valid type parameter (e.g., List<String>) but requiring that
the left angular parenthesis is not separated by a space (to
exclude ambiguities with XML/HTML tags).

Java annotations cannot be searched in the text as-is. In
fact, on Stack Overflow, it is common to refer to a user with
@<username>. This construct is ambiguous with annotations.

2

Question Answer

StackOverflowElement

StackOverflowPost Comment

InformationUnit

TextUnit
1 *

1 *

StrucuturedFragmentUnit

ASTNode

JavaASTNode JsonASTNode XmlASTNodeStackTraceASTNode

1

*

MetaInformation
1 *

VariableNames InvocationNamesTypes InvocationNames

User

StackOverflowArtifact

1

1 *

*1

Fig. 2. Partial Object Model of the dataset

To solve the ambiguity, we enforce similar constraints to the
one used for class mentions (since the annotations follow the
same naming conventions).

C. Simple Meta Information Mining

At the end of the island parsing phase we obtain all the
H-AST nodes for the information units. To enrich the dataset,
and to provide ready made data for simple analyses, we run a
visitor to extract simple meta information, like term frequency
data or the overall types mentioned in a unit.

III. DATA SCHEMA

Figure 2 shows the partial object model of our dataset. The
island parser and the model have been implemented in the
Scala language using the parboiled24 parser. Once we compute
the meta information, we serialize every object representing
the Stack Overflow discussion as JSON object which is then
exported to a text file. The total time required to extract the
data from the dump, parsing it, and writing to disk took
approximately 5.5 hours on a server with 16 Intel 2.10Ghz
Xeon processors and 128 GB of RAM.

Table I shows some simple statistics for the dataset, showing
the occurrences of some interesting H-AST nodes. The raw
uncompressed data dump consists of 90G of pretty-printed
JSON files, reduced to 29GB in the case of compact ones.

A. Meta Information

Every information unit exposes a set of precomputed meta
information obtained by traversing the H-AST. In StORMeD,
we provide the following precomputed meta information:

• Types, containing the set of Java types mentioned in
a unit, including qualified types (reference types) and
primitive types (e.g., int, double);

• Variable Names, containing all the H-AST nodes match-
ing a variable (or field) name;

• Invocation Names, containing all the H-AST nodes
matching a method invocation;

4https://github.com/sirthias/parboiled2

Node Type Occurrences Node
Type

Occurrences

Java Nodes XML Nodes
Identifiers 41,350,546 Nodes 1,306,372
Reference Types 7,403,224 Attributes 1,374,014
Variable Declarators 3,377,317 Comments 40,069
Expressions 14,992,718 JSON Nodes
Operators 3,496,329 Members 126,459
All Statements 6,055,351 Objects 49,519
Primitive Types 1,476,423 Text Nodes
Blocks 1,927,615 Fragments 15,492,077
Method Declarators 1,073,261 Stack Trace Nodes
Import Declarators 622,603 Lines 923,630
Annotations 993,909 Traces 29,377
Class Declarators 969,021
For Loops 181,243
Try Catch Statements 99,719
While Loops 85,625
Interface Declarators 21,908
Enum Declarators 8,513
Synchronized Statements 7,366
Do While Loops 4,207
Assertion Statements 1,799
Annotation Declarators 1,374

TABLE I
H-AST NODES OCCURRENCES IN THE DATASET.

• Natural Language, containing the term frequency (tf)
vector that can be used to calculate, for example, textual
similarities. The tf vector is generated using Apache
Lucene5. We split text on case change, on digits and
symbols, we lower the case, we remove stop words, and
we apply the snowball stemmer6 to the obtained terms.

B. The StORMeD Kit

The StORMeD Kit is available at http://stormed.inf.usi.ch.
Together with the two JSON datasets, one prettified, and one
non-prettified, we provide a developer kit containing an API
for Scala, but usable also with Java representing the object
model. The API allows to deserialize JSON files into Scala
instances, provides simple visitors for the H-AST, and also
allows to implement custom visitors.

5http://lucene.apache.org
6http://snowball.tartarus.org/

3

https://github.com/sirthias/parboiled2
http://stormed.inf.usi.ch
http://lucene.apache.org
http://snowball.tartarus.org/

IV. LIMITATIONS

The main limitations of our dataset concerns the typology of
data we provide. Comparing this dataset with the original data
dump of Stack Overflow, we do not include all the meta-data
concerning the community. We map posts to users, but we do
not include votes and badges. However, given the JSON nature
of the dump, this information can be easily added by the end-
user by managing the dataset with a non-relational database
like MongoDB or CouchDB7. Another limitation concerns the
parsing phase. As explained in Section II, we apply strict
parsing to some constructs of interests, in particular Java
types and qualified names. Even though the adopted rules are
conservative, it is not possible to reach perfect precision, and
some corner cases may appear in the dataset, for example when
some spurious fragments match the heuristics we used for class
name fragments (e.g.,, PRyLwCgqd). By a manual inspection
of a sample of documents, we found that examples similar to
the aforementioned one are rare, therefore the limitation should
not affect the reliability of the dataset. We plan to conduct a
detailed study on the quality of our dataset.

V. RESEARCH OPPORTUNITIES

An explicit advantage concerns the construction and repli-
cation of mining experiments, since our dataset is essentially
ready made. Without our dataset, a researcher would need to
know which data needs to be parsed a priori, construct an
extractor, parse the extracted fragments and construct a model.
If the extracted information is not suitable for the experiment,
the researcher needs to modify the parser and repeat the
process. With our dataset, the researcher only needs to traverse
the H-AST, which requires definitely less computational effort
than parsing. Analyzing a dataset like Stack Overflow could
become a computationally intensive process, in particular if
we consider the parsing process. With StORMeD, researches
do not have to care about the extraction of structured infor-
mation from text, but instead, they can focus on analysis. In
particular, our dataset easily enables combined analyses, which
is an interesting topic for the MSR community. For example,
according to the CFP of the mining challenge of 20158, one
suggested idea is “to compare the predictive power of three
settings on the number of votes on a Stack Overflow question:
natural language text alone, code fragments alone, and the
combination of text and code fragments”. A competitor in the
mining challenge could collect text fragments and real code
fragments by simply traversing the H-AST provided by our
dataset to then run her approach and evaluate it. A competitor
could take advantage of the meta-information already available
(i.e., code types) to improve the approach.

VI. CONCLUSION

In this paper we presented StORMeD, a dataset for Stack
Overflow that models the posts by building a H-AST for
each discussion in the data dump. Our dataset allows to

7See http://www.mongodb.org/ and http://couchdb.apache.org/
8http://2015.msrconf.org/challenge.php

navigate the contents of a discussion by differentiating among
Java code, XML, JSON, stack traces, and natural language
fragments. It also provides ready made meta-information like
term frequency vectors and mentioned types, and implicitly
enables combined analyses that leverage the heterogeneity of
Stack Overflow posts.

Acknowledgments. Ponzanelli and Lanza thank the Swiss
National Science foundation for the financial support through
SNF Project ESSENTIALS, No. 153129.

REFERENCES

[1] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” in Proc. of
CHI 2011 (29th Conference on Human factors in computing systems).
ACM, 2011, pp. 2857–2866.

[2] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza, “Understanding
and Classifying the Quality of Technical Forum Questions,” in Proceed-
ings of QSIC 2014 (14th International Conference on Quality Software).
IEEE CS Press, 2014, pp. 343–352.

[3] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web? (nier track),” in Proceedings of ICSE
2011 (33rd International Conference on Software Engineering), ACM,
Ed., 2011, pp. 804–807.

[4] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza, “Min-
ing StackOverflow to Turn the IDE into a Self-confident Programming
Prompter,” in Proceedings of MSR 2014 (11th Working Conference on
Mining Software Repositories). ACM, 2014, pp. 102–111.

[5] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based Recommenda-
tion to Support Problem Solving in Software Development,” in Pro-
ceedings RSSE 2012, (3rd International Workshop on Recommendation
Systems for Software Engineering). IEEE Press, 2012, pp. 85–89.

[6] M. Rahman, S. Yeasmin, and C. Roy, “Towards a context-aware IDE-
based meta search engine for recommendation about programming errors
and exceptions,” in Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE
Conference on, 2014, pp. 194–203.

[7] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of ICSE 2013 (35th Inter-
national Conference on Software Engineering). IEEE Press, 2013, pp.
832–841.

[8] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton,
“Improving low quality stack overflow post detection,” in Proceedings of
ICSME 2014 (30th International Conference on Software Maintenance
and Evolution, Industrial Track), 2014, pp. pp. 541–544.

[9] D. Correa and A. Sureka, “Chaff from the Wheat : Characterization and
Modeling of Deleted Questions on Stack Overflow,” in Proceedings of
WWW 2014 (23rd international conference on World Wide Web. ACM,
2014.

[10] W. Wang and M. W. Godfrey, “Detecting API usage obstacles: a
study of iOS and Android developer questions,” in Proceedings of
MSR 2013 (10th International Working Conference on Mining Software
Repositories). IEEE, 2013, pp. 61–64.

[11] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by
web developers,” in Proceedings of MSR 2014 (11th Working Conference
on Mining Software Repositories). ACM, 2014, pp. 112–121.

[12] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
bridging the gap between design and implementation,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 4, pp. 364–380, Apr 2001.

[13] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting structured
data from natural language documents with island parsing,” in In
Proceedings of ASE 2011 (26th IEEE/ACM International Conference
On Automated Software Engineering), 2011, pp. 476–479.

[14] L. Moonen, “Generating robust parsers using island grammars,” in
Proceedings of WCRE 2001 (8th Working Conference on Reverse
Engineering). IEEE CS, 2001, pp. 13–22.

4

http://www.mongodb.org/
http://couchdb.apache.org/
http://2015.msrconf.org/challenge.php

