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Abstract—Summarization is hailed as a promising approach
to reduce the amount of information that must be taken in by
the person who wants to understand development artifacts, such
as pieces of code, bug reports, emails, etc. However, existing ap-
proaches treat artifacts as pure textual entities, disregarding the
heterogeneous and partially structured nature of most artifacts,
which contain intertwined pieces of distinct type, such as source
code, diffs, stack traces, human language, etc.

We present a novel approach to augment existing summariza-
tion techniques (such as LexRank) to deal with the heterogeneous
and multidimensional nature of complex artifacts. Our prelim-
inary results on heterogeneous artifacts suggest our approach
outperforms the current text-based approaches.

I. INTRODUCTION

The knowledge of a developer is often not sufficient to
overcome a programming problem at hand, such as under-
standing the usage of a specific API. Overcoming this limita-
tion requires the developers to seek for additional sources of
information, generally resorting to asking teammates or mining
web artifacts such as forums, blogs, questions and answers
(Q&A) websites, and API documentation [1]. The amount of
available information is huge; to get an idea it suffices to think
of a web search: A developer types a query and retrieves at
least ten different documents from the first page. Then, the
developer needs to assess each document, or at least the title
of the document, or to spot keywords from the small textual
summaries provided with the result (i.e., like in Google). If
the developer has the feeling that a document could provide
the needed information, she opens the related link and starts
skimming the contents, she gets the relevant parts, and then
she moves on to the next document, if she is not satisfied yet.

We can distinguish two separate phases in this process:

1) The first phase concerns the query creation, and the
identification of a set of documents to be assessed by
the developer. Different solutions to help developers
with technological support have been proposed, such
as recommender systems [2] to automatically identify
relevant development artifacts, or automated web searches
of Stack Overflow discussions for a specific code context
[3].

2) The second phase relates to the identification of relevant
information and the assessment of artifacts. Here the
developer has to deal with documents whose size and
complexity is not negligible. One possible solution to
overcome this problem is to provide automated sum-
maries of the artifacts.

Reducing the overload of information on the developer by
means of summarization is not new in software engineering.
Rastkar et al. [4] leverage pre-existing summarization tech-
niques used to create summary of email threads, and generate
extractive summaries of bug reports. Lotufo et al. [5] exploit
PageRank [6] to create a general summarization approach
for bug reports. Similarly, Mani et al. [7] proposed an un-
supervised approach to bug report summarization where they
employed different techniques (e.g., Grasshopper, DivRank,
Centroid) to generate summaries. Other types of artifacts, such
as source code, have been used for ad-hoc summarization
approaches. Information retrieval techniques, such as vector
space model (VSM) or Latent Semantic Indexing (LSI), have
been harnessed to generate summaries of code samples [8][9].
Other approaches devised ad-hoc techniques to generate hu-
man readable summaries for code samples [10][11], or to
automatically generate release notes for a project [12].

All the aforementioned examples represent part of the
current state of the art in summarizing software artifacts. All
of these share a common limitation: they treat every artifact
as a purely textual artifact, or they limit their summarization
technique to a single type of artifact. According to Bacchelli
et al. [13], “Most of the general purpose summarization
approaches are tested on well-formed, or sanitized, natural
language documents. When summarizing development emails,
however, we have to deal with natural language text which
is often not well formed and is interleaved with languages
with different syntaxes, such as code fragments, stack traces,
patches, etc. [...] Currently no summarization technique takes
this aspect into account [...]”. The challenges they pointed out
about the summarization of development emails are still and
especially true for other types of artifacts (i.e., bug reports),
and for most of the online resources leveraged in software
development (e.g., tutorials, forums, Q&A websites).

Software artifacts cannot be considered as containers of
homogeneous types of information. Current approaches rely
solely on the textual and reductive interpretation of the data.
The information provided by software artifacts is rather het-
erogeneous and includes code, text, and many other types
of information whose value cannot be fully captured by a
pure textual interpretation. A good example is Stack Overflow,
where discussion contents include natural language, code,
XML configurations, images and many other things in the
same artifact.

We propose a novel technique to summarize Stack Overflow
discussions by dealing with heterogeneous information units.



We extend LexRank [14], a summarization approach based
on PageRank, by devising a custom similarity function for
heterogeneous entities like code samples and XML configu-
ration files. The preliminary results we obtained suggest that
a holistic approach on the heterogeneity of the information
could lead to better summarization results.

II. EXTENDING LEXRANK

Erkan et al. developed LexRank [14], an unsupervised sum-
marization algorithm based on PageRank [6], a well known
algorithm designed by Brin and Page. Understanding LexRank
requires background knowledge of the PageRank algorithm.
We briefly describe it from a high-level perspective to give
a general idea: To compute the relevance of a page within
a network of pages, the PageRank algorithm models the
behavior of a “random surfer”: a user who randomly surfs
the web and “keeps clicking on links, never hitting “back” but
eventually gets bored and starts on another random page” [6].

PageRank takes as input a directed graph G representing
the connection among pages (i.e., hyperlinks) and returns a
probability distribution P where each pi represents the prob-
ability that the random surfer visits a page i. The probability
associated to a page by this algorithm represents the centrality
of this page in the network, and is called PageRank.

If we consider a document as a network of sentences, the
PageRank algorithm can be extended to obtain the LexRank
algorithm: Erkan et al. devised sentences as nodes in the
graph G and used textual similarity instead of hyperlinks to
define edges. The textual similarity employed in the LexRank
algorithm is tf-idf [15]. An edge between two sentences in the
graph exists if and only if the textual similarity surpasses a
threshold (e.g., 0.1, 0.2). Since tf-idf is a symmetric function
(i.e., f(a, b) = f(b, a)), the created edges are not directed,
thus forcing the input graph G to be undirected as well.
However, this modification does not affect the computation
of the original PageRank, allowing to compute the lexical
PageRank, or LexRank [14]. We could have used the LexRank
algorithm “as is”, to generate a summary of a software artifact.
However, a software artifact is not a pure textual entity,
but it contains heterogeneous types of information units. For
example, if we consider a Stack Overflow discussion, and we
limit the heterogeneous types of information to text and code,
textual similarity, or topic-based similarity, are not appropriate
solutions.

Even if we consider simple term extraction or code labeling
approaches as the minimal extractive summary processes [8],
where the heterogeneity of the information can be reduced
to code and comments, a pure vector space model does not
perform well. According to De Lucia et al. [16], a naı̈ve
heuristic that extracts names from class definitions outper-
forms vector space model approaches (i.e., tf-idf) in labeling
source code. They suggest how “ad-hoc heuristics can be used
to better approximate the mental model used by developers
when identifying class keywords”.

We believe that textual similarity as the only dimension to
evaluate the “distance” between two heterogeneous types of

information is constraining and reductive. For example, textual
similarity hinders the whole information provided by a code
sample, and it is not practical to devise a concept of similarity
between homogeneous code elements. Also, textual similarity
cannot be applied to any non-textual elements, preventing us
from including information coming from images or video, as
well as information derived from third party elements like
users or developers.

Textual similarity should be considered as complementary
part of the information within a concept of multidimensional
information, where every type of information unit contained
in an artifact contributes in each dimension in a different way.

I am migrating from xml based spring configuration to "class" based 
configuration using the corresponding @Configuration annotation.

I  came across the following problem: I want to create a new bean, which 
has a reference to another (service) bean. Therefore I autowired this class 
to set this reference during bean creation. My configuration class looks as 
follows:

@Configuration
@ComponentScan(basePackages = {"com.akme"})
public class ApplicationContext {

    @Resource
    private StorageManagerBean storageManagerBean;

    @Bean(name = "/storageManager")
    public HessianServiceExporter storageManager() {
        HessianServiceExporter hessianServiceExporter =
                                                new HessianServiceExporter();
        hessianServiceExporter.setServiceInterface(StorageManager.class);
        hessianServiceExporter.setService(storageManagerBean);
        return hessianServiceExporter;
    }
}

But this doesn't work, because the causes a 
BeanNotOfRequiredTypeException exception during startup.

Bean%named%'storageManagerBean'%must%be%of%type%
[com.akme.StorageManagerBean],%but%was%actually%of%type%
[com.sun.proxy.$Proxy20]

The StorageManagerBean is annotated with an @Service annotation. And 
the xml based configuration worked as expected:

<bean name="/storageManager" 
   class="org.springframework.remoting.caucho.HessianServiceExporter">
  <property name="service" ref="storageManagerBean"/>
  <property name="serviceInterface" value="com.akme.StorageManager"/>
</bean>

<p>
<code>

<p>
<code>

<p>
<p>

<code>

Fig. 1. Example of Stack Overflow question with HTML tagging.

A. Contents Parsing and Information Units

There are several information units to be taken into account
when describing a complex software artifact containing hetero-
geneous elements. In this paper we focus on Stack Overflow.
Figure 1 shows an example of question taken from Stack
Overflow1. We take advantage of the semi-structured nature
of the data contained in the posts, thus relying on the tagging

1http://goo.gl/4sdHdB
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performed by users on Stack Overflow. The contents are
tagged by means of HTML tags where <pre> and <code>
identify code-tagged contents. Every part tagged as code needs
to be parsed to reconstruct its syntactic structure. However,
such fragments tagged as code often contain natural language,
and are likely to be incomplete and formally invalid with
respect to the Java or XML grammar. We implemented a full-
fledged island grammar [17] to detect and parse both Java
and XML constructs in <code> elements. Island parsing
supports the extraction of interesting constructs (the islands)
immersed in non-interesting parts (the water). This enables
both the separation of natural language from code, and the
reconstruction of the syntactic structure of incomplete code,
recovering identifiers, declarations, statements, etc. [18] and
whatever matches the constructs of interest in our grammar.

Textual Units: whatever is not tagged as code is treated as
pure text. Since we consider the very first level in the HTML
DOM, textual units can actually contain small portion of code.
For example, a paragraph <p> can have a <code> tag among
its children. However, these code tags are most likely used to
highlight tiny code fragments, like variables, class and method
identifiers, or method calls.

Code Sample Units: Whatever matches a Java construct
implemented in the island parser is considered a code sample
unit. Whatever is not parsed as a valid or incomplete con-
struct of interest is checked as xml. Every code sample unit
carries a partial Abstract Syntax Tree (AST) generated by the
island parser, representing the code and navigable to perform
analyses.

XML Sample Units: Whatever matches a XML construct
is considered as xml sample unit, and the related AST is
generated. If the contents do not matches any xml-related
construct in the parser, then it is pushed back as textual unit.

B. Meta-Information

Each information unit carries one or more meta-information
types concerning a specific aspect of its contents. For example,
meta-information can be extracted from the AST generated
by the island parser: Every unit, including textual units, are
parsed to extract code fragments. We devise the following
meta-information units:

Types: It represents the set of Java types mentioned in a
information unit. We consider fully qualified types (reference
types), simple names matching Java convention for classes
(i.e., begin with a capital letter), and primitive types (e.g., int,
double). This meta-information applies to all the information
units (e.g., types mentioned in natural language and extracted
with the island parser).

Variable Names: All the AST nodes matching a variable
name are extracted and stored in this meta-information node.
This applies to code samples and textual information units.

Invocation Names: All the AST nodes matching a method
invocation are extracted and the name of the invoked method
is stored in the meta-information node. We discard arguments
passed to the method. This meta-information applies to both
code samples and textual information units.

Natural Language: We also complement the meta-
information with pure textual information. For each type of
information unit we can generate a tf-idf vector that will be
used later on in the calculation of the similarity.

C. Similarity Function

The final step in extending the LexRank algorithm is to
devise a similarity function that takes two information units
and returns a similarity value, which ranges between 0 and 1.
Each type of information unit can carry an arbitrary number of
meta-information. To explain how we construct the similarity
of two information units from their meta-information, and
thus how the similarity function works, we go through an
example scenario. Consider two information units U1 and U2

of different type. Since we can compare only shared meta-
information, let T1,2 be the set of shared types of meta
information between the units, and let M(Ui, t) be the meta-
information of type t for the information unit Ui.

We define the similarity vector V as:

Vx,y = 〈v0, . . . , v|T1,2|〉
with vi = M(U1, ti) ∼M(U2, ti) and ti ∈ T1,2

Each element vi of the vector V represents the similarity
value between two homogeneous meta-information units, and
ranges in the interval [0, 1]. Once we have computed all the
elements of V , we calculate the general similarity between
two information units U1 and U2 as the norm of the vector:

fsim(U1, U2) =
||V1,2||√
dim(V1,2)

Since we want fsim to provide a value in the range [0, 1],
we divide the norm of the vector by the maximum possible
value of the norm. We can use this similarity function with the
LexRank algorithm to compute the centrality of an information
unit inside the network of information units of an artifacts.

D. Summary Generation

Once the extended Lex Rank is computed, each information
node receives a centrality value. We select the top n units,
according to the percentage of the summary we want to show.
In essence the user can decide how concise the summary will
be. However, we keep one single constraint on the original
structure of the Stack Overflow discussion: There must always
be one information unit from the question and one information
unit from one of the answers. The unit can either be extracted
from the body or from one of the related comments.

The generated summary is interactive and allows the de-
veloper to incrementally disclose information on demand. By
means of a slider, the developer chooses the percentage of the
original discussion that she wants to see.

III. PRELIMINARY EVALUATION

We present a preliminary evaluation of our approach, start-
ing from its setup.
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A. Experimental Setup

We involved nine people (6 Master students and 3 PhD
students) to annotate information units on Stack Overflow dis-
cussions through a web application developed by us, illustrated
in Figure 2.

Fig. 2. Example of Stack Overflow discussion proposed to users.

The application presents the discussion with a random order
to each user, and shows the contents of a discussion by
separating each single information unit from the other. Each
subject annotated the units of 9 different discussions. Every
user gave a rating to each information unit by providing the
number of stars on a Likert scale between one and five. We
asked people to give a rating according to the prominence of
the unit in the discussion.

B. Evaluation Approach

According to the current state of the art, there is no standard-
ized way of evaluating artifacts summaries [13]. Moreover,
nobody tackled the evaluation of summaries containing het-
erogeneous information units. We devised our own approach
to evaluate our summaries. We tried to simulate the generation
of a “golden standard” summary. Given a Stack Overflow
discussion, we calculate the average rating received for each
information unit, and we sort the units in descending way.
Then, we fix a percentage value that represents the subset of
information unit we want to show in the summary. This subset
represents the golden summary for a given percentage.

Once we have constructed the golden summary of a dis-
cussion, we generate a summary with our own approach. To
evaluate the generated summary we calculate the precision,
that is, the percentage of units selected by our approach that
matches the units in the golden summary.

C. Preliminary Results

Table I shows the preliminary results we obtained. We
created six golden summaries representing 5%, 10%, 15%,
25%, 35%, and 50% of the information units contained in
a Stack Overflow discussion. To have a reference value, we
applied the same evaluation approach on the original LexRank
algorithm, that is, every information unit treated as pure textual
information. Best results are reported in bold.

At a first observation, we can distinguish four different
scenarios of the two approaches. The first scenario concerns

TABLE I
PRECISION ON HUMAN ANNOTATED DISCUSSIONS.

Our Approach
Size D1 D2 D3 D4 D5 D6 D7 D8 D9
5% 0% 50% 0% 100% 100% 0% 50% 0% 33%
10% 33% 25% 50% 67% 50% 67% 50% 0% 33%
15% 60% 43% 33% 60% 75% 40% 33% 20% 44%
25% 56% 55% 30% 33% 43% 25% 50% 38% 53%
35% 62% 75% 50% 50% 30% 45% 57% 42% 52%
50% 58% 57% 57% 56% 43% 65% 70% 47% 67%
Original LexRank Algorithm
Size D1 D2 D3 D4 D5 D6 D7 D8 D9
5% 0% 0% 0% 0% 100% 0% 50% 0% 33%
10% 33% 0% 50% 33% 50% 33% 25% 0% 17%
15% 60% 43% 33% 40% 75% 20% 17% 20% 33%
25% 67% 55% 30% 33% 43% 38% 40% 25% 47%
35% 69% 75% 50% 50% 40% 45% 50% 33% 52%
50% 63% 61% 57% 56% 43% 65% 65% 47% 70%

discussions D3 and D5, where results show no difference in
terms of performance. The second scenario concerns discus-
sion D1, where the original LexRank algorithm performs better
than our approach. On the opposite side, we have the third
scenario, where for discussion D4, D7, and D8 our approach
outperforms the pure textual based approach. In the fourth
scenario we have discussions D2, D6, and D9, where each
approach performs better than the others depending on the
size of the summary.

In general, the results show that our approach generally
either outperforms the classic LexRank algorithm, and specif-
ically it does so on the shorter summaries. This is what the
user in the end finds more desirable, since shorter summaries
reduce the information that needs to be taken in by a person.
This is also especially true in the case of heterogeneous
artifacts, where a person is otherwise forced to comprehend
the various distinct pieces of information of different nature.

IV. CONCLUSION

Summarizing complex software artifacts is a non-trivial
task due to their heterogeneous and multidimensional nature.
Different fragments of information (e.g., code, text, xml) co-
exist in the same artifacts and contribute differently to the
overall knowledge contained in them. Current approaches in
summarization do not take this fundamental fact into account,
and reductively treat artifacts as if they were purely textual.

We propose a novel approach to summarization, adapting
LexRank to integrate different aspects of the heterogeneous
information contained in them. We obtained promising results
in our preliminary evaluation, and we discussed how results
suggest that a holistic point of view on the heterogeneous
information contained in software artifacts is worth being
explored to improve the current state-of-the-art approaches.
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