
Empir Software Eng
DOI 10.1007/s10664-015-9397-1

Prompter
Turning the IDE into a self-confident programming assistant

Luca Ponzanelli1 ·Gabriele Bavota2 ·
Massimiliano Di Penta3 ·Rocco Oliveto4 ·
Michele Lanza1

© Springer Science+Business Media New York 2015

Abstract Developers often require knowledge beyond the one they possess, which boils
down to asking co-workers for help or consulting additional sources of information, such
as Application Programming Interfaces (API) documentation, forums, and Q&A websites.
However, it requires time and energy to formulate one’s problem, peruse and process the
results. We propose a novel approach that, given a context in the Integrated Development
Environment (IDE), automatically retrieves pertinent discussions from Stack Overflow,
evaluates their relevance using a multi-faceted ranking model, and, if a given confidence
threshold is surpassed, notifies the developer. We have implemented our approach in
PROMPTER, an Eclipse plug-in. PROMPTER was evaluated in two empirical studies. The
first study was aimed at evaluatingPROMPTER’s ranking model and involved 33 participants.

Communicated by: Sung Kim and Martin Pinzger

� Luca Ponzanelli
luca.ponzanelli@usi.ch

Gabriele Bavota
gabriele.bavota@unibz.it

Massimiliano Di Penta
dipenta@unisannio.it

Rocco Oliveto
rocco.oliveto@unimol.it

Michele Lanza
michele.lanza@usi.ch

1 REVEAL @ Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

3 Department of Engineering, University of Sannio, Benevento, Italy

4 CSSC Lab - Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10664-015-9397-1-x&domain=pdf
mailto:luca.ponzanelli@usi.ch
mailto:gabriele.bavota@unibz.it
mailto:dipenta@unisannio.it
mailto:rocco.oliveto@unimol.it
mailto:michele.lanza@usi.ch

Empir Software Eng

The second study was conducted with 12 participants and aimed at evaluating PROMPTER’s
usefulness when supporting developers during development and maintenance tasks. Since
PROMPTER uses “volatile information” crawled from the web, we also replicated Study I
after one year to assess the impact of such a “volatility” on recommenders like PROMPTER.
Our results indicate that (i) PROMPTER recommendations were positively evaluated in
74 % of the cases on average, (ii) PROMPTER significantly helps developers to improve the
correctness of their tasks by 24 % on average, but also (iii) 78 % of the provided recommen-
dations are “volatile” and can change at one year of distance. While PROMPTER revealed
to be effective, our studies also point out issues when building recommenders based on
information available on online forums.

Keywords Recommenders · Mining software repositories · Stack overflow · Empirical
studies

1 Introduction

The myth of the lonely programmer is still lingering, in stark contrast with reality: Soft-
ware development, also due to the ever increasing complexity of modern systems, is tackled
by collaborating teams of people. A helping hand is often required, either by team mates
(Ko et al. 2007), through pair programming sessions (Constantine 1995), or the perusal of
vast amounts of knowledge available on the Internet (Umarji et al. 2008). While asking team
mates is the preferred means to obtain help (LaToza et al. 2006), their availability may fall
short. In this case, developers resort to electronically available information.

This comes with a number of problems, the main one being the absence of automation.
Every time developers need to look for information, they interrupt their work flow, leave
the IDE, and use a Web browser to perform and refine searches, and assess the results.
Finally, they transfer the obtained knowledge to the problem context in the IDE. The infor-
mation is retrieved from different sources, such as forums, mailing lists (Bacchelli et al.
2012), blogs, Q&A websites, bug trackers (Anvik et al. 2006), etc. A prominent exam-
ple is Stack Overflow, popular among developers as a venue for sharing programming
knowledge. Stack Overflow is vast. In 2010 it already had 300k users, and millions of ques-
tions, answers, and comments (Mamykina et al.). This makes finding the right piece of
information cumbersome and challenging.

Recommender systems (Robillard et al. 2010) represent a possible solution to this prob-
lem. A recommender system gathers and analyzes data, identifies useful artifacts, and
suggests them to the developer. Seminal tools, such as EROSE (Zimmermann et al. 2004),
HIPIKAT (Cubranic and Murphy 2003) and DEEPINTELLISENSE (Holmes and Begel 2008),
suggest project artifacts in the IDE aiming at providing developers with additional informa-
tion on specific parts of the system. They come however with a caveat: the developer must
proactively invoke them, and, once invoked, they continuously display information, which
may defeat their purpose, as they augment the complexity of what is displayed in the IDE.
Ideally, a recommender system should behave like a prompter in a theatre: ready to provide
suggestions whenever the actor needs them, and ready to autonomously give suggestions if
it feels something is going wrong.

The interaction between the theatre prompter and the actor is similar to the interac-
tion between two developers doing pair programming, working side by side to write code.
These developers have different roles, i.e., the driver, who is in charge of writing code, and

Empir Software Eng

the observer, who observes the work of the driver (Williams 2001), tries to understand the
context, and, if she has enough confidence, interrupts the driver by giving suggestions. In
addition, the driver can consult the observer whenever she needs it, making the observer the
programming prompter of the programming actor.

By following a metaphor similar to the interaction between the theatre prompter and
the actor, we propose PROMPTER, a fully automated tool that retrieves and recom-
mends, through push notifications, relevant Stack Overflow discussions to the developer.
PROMPTER makes the IDE a programming prompter that silently observes and analyzes the
code context in the

IDE, searches for Stack Overflow discussions on the Web, evaluates their relevance
by taking into consideration code aspects (e.g., code clones, type matching), conceptual
aspects (e.g., textual similarity), and Stack Overflow community aspects (e.g., user reputa-
tion) to decide, given a certain amount of self-confidence (encoded in a threshold the user
can change through a slider, to make the recommender quiet or talkative) when to suggest
discussions.

We have evaluated PROMPTER through two studies. In the first one (Study I)
we asked 33 developers to indicate to what extent the Stack Overflow discussions
pushed by PROMPTER for 37 code snippets were actually related to them. Partici-
pants positively evaluated 76 % of the recommendations. In the second study (Study
II) we assessed the usefulness of PROMPTER to developers performing development
and maintenance tasks. We evaluated the performance (in terms of completeness of the
assigned task) of 12 participants when performing the assigned tasks with and without
PROMPTER support. The achieved results showed that the boost provided by the PROMPTER

recommendations helped participants in improving their performance of 24 % on
average.

In addition, we replicated Study I after one year with 18 additional participants. The
goal of the replicated study was to assess the impact of the “volatility” of the information
exploited by PROMPTER on its recommendations. Indeed, PROMPTER exploits information
mined from Stack Overflow that are not guaranteed to be always available (e.g., a discus-
sion might be deleted or moved toward other Q&A websites) and that can change over
time (e.g., the content of a question in a Stack Overflow discussion can always be updated
by the user who formulated the question). The results of our study showed that 78 % of
the Stack Overflow discussions recommended by prompter in Study I changed after one
year (i.e., a different Stack Overflow discussion is pushed by PROMPTER starting from
the same code context). This result highlights the irreproducibility of studies performed to
evaluate recommenders mining information from “volatile” sources like Q&A websites.
Also, it highlights the fact that the performances of recommenders based on informa-
tion available on online Web forums or code search engines can vary over time. Despite
these changes in the PROMPTER recommendations, our results show that the new Stack
Overflow discussions pushed by PROMPTER are as well-evaluated by participants as the
old ones.

Summarizing, this paper makes the following contributions:

– a novel ranking model to evaluate the relevance of a Stack Overflow discussion, given
a code context in the IDE, by considering code, conceptual and community aspects;

– the implementation of our approach in the PROMPTER Eclipse plug-in;
– an empirical evaluation, Study I, aimed at validating the devised ranking model;
– a controlled experiment, Study II, aimed at evaluating the usefulness of PROMPTER

during development and maintenance tasks;

Empir Software Eng

– the replication of Study I after one year, to assess the impact of information volatility
on the PROMPTER recommendations;

– a comprehensive replication package publicly available at http://prompter.inf.usi.ch/.

Structure of the Paper In Section 2 we present our approach and its implementation
in PROMPTER. In Section 3 we present the results of the ranking model evaluation of
PROMPTER (Study I). In Section 4 we present the evaluation of PROMPTER with devel-
opers (Study II), while the replication of Study I one year later is described in Section 5.
We discuss threats to validity in Section 6 and review related work in Section 7. Section 8
concludes the paper and outlines directions for future work.

2 PROMPTER

We first introduce PROMPTER’s user interface and architecture. We then discuss and
describe the approach implemented in PROMPTER, especially focusing on the ranking
model, its features, and the techniques that enable its self-confidence.

2.1 User Interface

Figure 1 shows the user interface of PROMPTER. It provides two views through which the
user can (i) receive and track notifications, and (ii) read the suggested Stack Overflow dis-
cussions. The notification center (1) is the main view of PROMPTER and it is used to notify
the developer whenever a relevant result is available. When PROMPTER considers a discus-
sion as relevant for the current context (i.e., for the code opened in the IDE), it opens the
notification center and plays a sound. If a Stack Overflow discussion is notified more than
once, it is pushed to the top of the list for visibility.

Figure 2 shows an example of notification. The developer is provided with some
information regarding

(a) the title of the Stack Overflow discussion,
(b) the notification date and time, and

12

Fig. 1 The PROMPTER User Interface

http://prompter.inf.usi.ch/

Empir Software Eng

c

db

a

Fig. 2 PROMPTER notification details

(c) the confidence level of PROMPTER on the Stack Overflow discussion against the
related code context,

Moreover, PROMPTER provides feedback, tracking and linking functionalities in the
bottom-right corner. By clicking on the thumb up (down) icon, the developer can rate
the discussion as useful (useless) with respect to the coding activity she is performing in
the IDE. Currently, the feedbacks provided by PROMPTER’s users are only stored in a
database for possible future usages, including: (i) a better tuning of the PROMPTER ranking
model, and (ii) the possibility to gather indications on the goodnesses of the PROMPTER’s
recommendations during case studies.

The other icons on the notification allow the developer of backtracking the code entity
associated with a specific notification (eye icon), or to link the suggested discussion to its
code entity (chain icon). If the developer clicks on the former, PROMPTER opens up a code
editor and highlights the portion of code related to the notification. If the developer clicks
on the latter, a simple annotation reporting the URL of the discussions is created in the code
in form of a comment.

Whenever a developer clicks on a notification, a Stack Overflow document view (point 2
in Fig. 1) is opened, which shows the contents of the Stack Overflow discussion. At the top
of the notification center, the developer can change the sensitivity of the notification system
(point 2 in Fig. 3(a)): by sliding to the right PROMPTER is more talkative and produces more
notifications, by sliding to the left it becomes more taciturn and requires a higher level of
confidence to notify the developer. Moreover, by clicking on the arrow in the top-left corner
(point 1 in Fig. 3(a)), the developer can access the full result set of Stack Overflow discus-
sions related to the last notification (i.e., the other Stack Overflow discussions retrieved by
PROMPTER for the same code context but not pushed as having a lower confidence level).

2 31

54

Fig. 3 Notification center bars of PROMPTER

Empir Software Eng

Explicit Query Writing Sometimes PROMPTER is not able to point out the right Stack
Overflow discussion or probably it has not enough information to generate a notification.
A similar situation could happen at the very beginning of the development, when there are
just few lines of code (e.g., a class stub) written in the IDE’s code editor. To overcome
these situations, we implemented an additional manual interaction where we provide the
developer with the capability to perform manual searches. Whenever the developer wants
to search for Stack Overflow discussions on her own, she can click on the manual search
button at the top right corner (point 3 in Fig. 3(a)). The notification center disappears and a
manual search bar becomes available (Fig. 3(b)). There, the developer can manually type a
query (point 4 in Fig. 3(b)) and search for Stack Overflow discussions. As it will be clearer
later, the first version of PROMPTER did not implement the search bar for manual query
formulation. The need for such a feature has been highlighted by participants of our second
study (see Section 4).

The results are presented in form of notification, where each one presents a confidence
value according to the code context obtained from the code editor on top, that is, the active
code editor. While the developer is interacting with the manual search view, she can con-
tinue modifying and writing code. If PROMPTER pushes a discussion in the meanwhile, the
developer is notified anyway: a counter of the unseen notifications will popup on top of
the notification center icon—point 5 in Fig. 3(b)—and it resets as soon as the developer
accesses the notification center by clicking on the icon.

Explicit Invocation A prompter in a theatre not only prompts the right sentence to the
actors on the stage, but also provides support on demand. Indeed, an actor can always ask
the prompter for a cue in order to go on with the show. In PROMPTER we implemented the
same interaction: the developer can always ask PROMPTER to perform a search on a specific
code entity (i.e., method or class), by accessing the contextual menu in the code editor, or on

Fig. 4 Explicit invocation of PROMPTER via contextual menu

Empir Software Eng

the package explorer. In the first case, PROMPTER searches discussions for the code entity
identified by cursor in the editor, while in the second case it searches according to the code
entity selected (see Fig. 4).

2.2 Architecture and Control Flow

Figure 5 depicts the interactions among all the components of PROMPTER when it searches,
evaluates, and triggers a new notification to the developer.

PROMPTER tracks code contexts every time a change in the source code occurs. The
extracted code context—code elements to formulate the query—is sent to the Query Gen-
eration Service, which formulates a query starting from the code context. It extracts a query
and, according to a set of parameters described later, determines if a new search can be trig-
gered. This information is sent back, with the query and the context, to the plug-in. Since
the query is the basis of every search triggered by PROMPTER, the plug-in also considers the
query when deciding to trigger a new search. PROMPTER submits a new search only if the
query differs from the last one. The query and code context are sent to the Search Service,
which acts as a proxy between the plug-in, the search engines to which the query is sent,
and the Stack Overflow API. The query is sent to search engines (Google, Bing) to perform
a Web search on the Stack Overflow website. The first 100 Stack Overflow discussions
retrieved by each of the two search engines (a retrieved URL refers to a question from Stack
Overflow if it matches the form stackoverflow.com/questions/〈id〉/〈title〉) are collected and
merged in a single set, where duplicates are removed. Note that this set of retrieved Stack
Overflow’s discussions is not ranked in any way (i.e., we ignore the ranking made by the
search engine) since PROMPTER will evaluate the relevance of each of these discussions to

Fig. 5 The UML sequence diagram representing the background search phase performed by PROMPTER

whenever the developer modifies a code entity

stackoverflow.com/questions/<id>/<title>

Empir Software Eng

the code context by using its own ranking model. The search service uses the Stack Over-
flow question ID to retrieve the discussion via the Stack Overflow API. Every discussion
is ranked according to the Ranking Model (see Section 2.3), that takes into account the
developer’s code context. The ranked list of URLs, along with the related confidence values
given by the model, is sent back to PROMPTER. The plug-in takes the top-ranked discus-
sion and evaluates its confidence level against the threshold set by the developer. In case the
confidence surpasses the threshold, the top-ranked discussion is notified to the developer.

2.3 Retrieval Approach

Our approach is capable of (i) connecting different aspects of the code written by developers
to the information contained either in the text or in the code of Stack Overflow discussions,
and (ii) taking into consideration information about the quality of the discussions that Stack
Overflow has available (e.g., user reputation and questions/answers score). Our previous
work only used text similarity to retrieve Stack Overflow discussions related to the actual
code (Ponzanelli et al. 2013a). This led to errors in the identification of relevant discussions.

Tracking Code Contexts in the IDE PROMPTER is meant to be a silent observer
“looking” at what a developer writes, with the aim of suggesting relevant Stack Overflow
discussions. Whenever the developer types, PROMPTER waits until the developer stops writ-
ing for at least s seconds,1 identifies the current code element (i.e., method or class) that
has been modified, and extracts the current context, which consists of: (i) a fully qualified
name identifying the code element;2 (ii) the source code of the modified element (i.e., class
or method); (iii) the types of the used API, taking into account only types outside the ana-
lyzed Eclipse project (i.e., declared in external libraries or in the JDK); and (iv) the names
of methods invoked in the API, again considering only external libraries and JDK only. The
extracted information (i.e., the context) is sent to the Query Generation Service (see Fig. 5)
to generate a query.

Generating Queries from Code Context Since we want to automatize the triggering
of searches for discussions on Stack Overflow, we have to devise a strategy to build a
query describing the current code context in the IDE. A näive approach (Ponzanelli et al.
2013a) is to treat the code as a bag of words by: (i) splitting identifiers and removing
stop words; (ii) ranking the obtained terms according to their frequency; and (iii) selecting
the top-n most frequent terms. Using only the frequency value is not highly discriminat-
ing in selecting terms that appropriately describe the context: Words like run or exception,
even if very frequent in source code, have a too general meaning in programming to dis-
criminate the programming context. Our solution is to also consider the entropy of a
given term t in Stack Overflow—previously used in the context of quality assessment and

1The s threshold is customizable. By default it is set to 5.
2Classes are identified by the unique id projectName.packageName.ClassName, methods are identified by
projectName.packageName.ClassName.methodSignature

Empir Software Eng

reformulation of queries for text retrieval in software engineering (Haiduc et al. 2013;
Haiduc et al. 2012; Haiduc et al. 2012)—and computed as:

Et = −
∑

d∈Dt

p(d) · logμ p(d) (1)

where Dt is the set of discussions in Stack Overflow containing the term t , μ is the
number of discussions in Stack Overflow, and p(d) represents the probability that the ran-
dom variable (term) t is in the state (discussion) d. Such a probability is computed as
the ratio between the number of occurrences of the term t in the discussion d over the
total number of occurrences of the term t in all the discussions in Stack Overflow. The
entropy has a value in the interval of [0, 1]. The higher the value, the lower the discrimi-
nating power of the term. We computed the entropy of all 105,439 terms present in Stack
Overflow discussions by using the data dump of June 20133. Frequent terms exhibit high
levels of entropy (e.g., for run the entropy was 0.75) compared to less frequent and more
discriminative terms (e.g., for swt the entropy was 0.25). Therefore, term entropy can be
used to lower the prominence of frequent terms that do not sufficiently discriminate the
context.

It is important to point out that the interpretation of term entropy is more similar to
the interpretation of Gibbs’ entropy from thermodynamics than to the Shannon’s entropy
(Shannon 1948). That is, words that are highly diffused across documents have high entropy,
much alike particles in a gas, whereas words occurring only in few documents have a low
entropy, much alike particles in a solid. Our definition of entropy may still be interpreted
as a Shannon entropy, similarly to what done by Hassan (2009) to change entropy. That is,
if a word is scattered in many files, you need more bits to keep track of where it is located
(e.g., the inverted index representation would allocate more memory for that word) than if
it appears in few documents.

Last, but not least, it is important to point out that, while Et converges to a idf (i.e.,
Inverse Document Frequency) when a term is diffused, strictly speaking the definition of
Et is different from the idf definition. Indeed, previous studies that compared the idf and
the entropy, concluded that “despite the - log(P) form of the traditional IDF measure, any
strong relationship between it and the ideas of Shannon’s information theory is elusive.”
Robertson (2004).

The Query Generation Service ranks the terms in the context based on a term quality
index (TQI):

TQIt = νt · (1 − Et) (2)

where t is the term, νt is frequency in the context, and Et is its entropy value measured as
described before.

Once the ranking is complete, the Query Generation Service selects the top n terms to
devise the query, plus the word java. The query can exceed n terms in case two or more
terms exhibit the same TQI value.

3http://www.clearbits.net/torrents/2141-jun-2013

http://www.clearbits.net/torrents/2141-jun-2013

Empir Software Eng

To better understand this process, we show an example of query creation.

Listing 1 shows a Java method from which the Query Service has to extract a query. The
method is making use of a library applying the Snowball Stemmer4 on a set of tokens. By
treating the code as bag of words, we tokenize the text on white spaces, split on case-change,
symbols and numbers, lower the case, and remove English stop-words and Java keywords.
Table 1 shows the resulting tokens with the respective frequency and entropy value. Tokens
in bold are the one selected for the query.

We can notice how the entropy acts as dumping factor for the frequency, making high
entropy value terms lose power. An example is the term tokens that has more priority than
the term list even though it has half the frequency values of the other term. However, the
term entropy approach has one drawback. We observed that terms with a very low entropy
(thus good candidates to be part of a query) may be terms containing typos (e.g., for over-
ride the entropy was 0.63, and for overide it was 0.05). They are present in very few Stack
Overflow discussions and thus have a low entropy. To overcome this problem, before select-
ing the n terms to create the query, we use the Levenshtein distance (Levenshtein 1966) to
check for terms with a very high textual similarity. If we detect two terms (say ti and tj)
having Levenshtein distance = 1, the term having the lower frequency in the context (say
ti) is discarded and considered as a likely typo, and its frequency is added to the frequency
of tj . If the two terms have the same frequency, we discard the lower entropy term as a
likely typo.

2.4 Prompter Ranking Model

The goal of the ranking model is to rank the retrieved Stack Overflow discussions, and
assign them a value that measures their relevance to the query. It relies on 8 different features
that capture relations between Stack Overflow discussions and source code.

1. Textual Similarity: The similarity of the code in the IDE to the textual part of a
Stack Overflow discussion without code samples. The goal is to assess the similar-
ity between the topics of the code and the topics of the discussion. We use APACHE

LUCENE to create the index and preprocess the contents, by removing English stop
words and Java language keywords, by splitting compound identifiers/token based on
case change and presence of digits, and by applying the Snowball stemming. Finally, we
compute the cosine similarity among the tf-idf vectors(Baeza-Yates and Ribeiro-Neto
1999; Manning et al. 2008).

4http://snowball.tartarus.org/

http://snowball.tartarus.org/

Empir Software Eng

Table 1 Selected terms for the code entity in Listing 1

Term Frequency Entropy TQI

stemmer 6 0.15 5.10

stemmed 3 0.15 2.55

tokens 2 0.45 1.10

list 4 0.74 1.04

snowball 1 0.11 0.89

stem 1 0.25 0.75

english 1 0.51 0.49

filter 1 0.58 0.42

array 1 0.72 0.28

set 1 0.80 0.20

add 1 0.84 0.16

2. Code Similarity: The percentage of lines of code in the IDE that are cloned in the
Stack Overflow discussion. We use DUDE (Wettel and Marinescu 2005), a fast and
lightweight line-based textual clone detector, to identify cloned statements among code
and documents.

3. API Types Similarity: The percentage of API types used in the code that are also
present in the Stack Overflow discussion. These are types that are not declared in the
project, but in external libraries or in the JDK. The higher the usage of the same types
in both discussions and code, the more the potential usefulness of the discussions. To
identify the API types, we parse every code sample in the discussion with the Eclipse
JDT parser. We are able to resolve types among different samples in the discussion as
long as the fully qualified name (e.g., imports) of the type is used in one them, or if the
identified type is part of the standard JDK. In case of unresolved types, we match the
identified simple name of the class with the simple name of the types used in the code.

4. API Methods Similarity: The percentage of API method invocations in the code
present in the Stack Overflow discussion. Higher values suggest a similarity in API
usage. We use the Eclipse JDT parser to identify method invocations that respect the
Java grammar even if the type is not resolved. Since we can only identify the name and
number of parameters without any signature, we only consider the name of the invoked
method, which helps matching overloaded methods.

5. Question Score: The quality of the score of the question in the Stack Overflow discus-
sion. Since the score is not bounded, we normalize the value in the range [0,1] using a
sigmoid function:

σ(x) = 1

1 + e(x̄−x)
(3)

where x is the score and x̄ is the average of the scores of all the questions in Stack
Overflow according to the data dump of June 2013. This index indicates the quality of
the question, according to the Stack Overflow community.

6. Accepted Answer Score: The quality of the score of the accepted answers in the Stack
Overflow discussion. In case no accepted answer is present, the score is set to zero.
The score is normalized like the question score, using the related average score. This

Empir Software Eng

index indicates the quality of the accepted answer, according to the Stack Overflow
community.

7. User Reputation: The level of reputation of the person who posted the question. The
value is normalized like the two previous features, using the related average value.
Differently from the two previous indexes, this index evaluates the reliability of the
person who asked the question on the Stack Overflow community.

8. Tags Similarity: The percentage of tags covered by keywords extracted from imports.
Tags gets split on number and symbols to remove versions, and tokens are matched
against the tokens obtained by splitting imports on dots and lowering the case, with-
out considering the case change. For example the tag apache-httpclient-4.x becomes
[apache, httpclient] and the import statement org.apache.http.client.HttpClient
becomes [org, apache, http, client, httpclient] . In this case, there is a 100% coverage
of the tags. The idea is to identify the topics or libraries used in the discussions even if
there is no code in the discussion.

Ranking Model Definition These 8 features are linearly combined to define the ranking
model. Each feature is assigned a weight that defines the impact of this specific feature on
the overall score:

S =
n∑

i=1

wi · fi having
n∑

i=1

wi = 1 (4)

where fi ∈ [0, 1] is a feature value and wi ∈ [0, 1] is the assigned weight. In doing so, the
score S ranges in the interval [0,1] as well. The next step is to calibrate the weights of the
PROMPTER features in (4).

Calibration of the ranking model We need a way to objectively measure the recom-
mendation accuracy of a given PROMPTER configuration, a “gold standard” composed of
code contexts each of which is linked to a set of “relevant” (useful to a developer working
on a specific context) Stack Overflow discussions. With such a dataset, the recommenda-
tion accuracy of a specific PROMPTER configuration can be measured as the number of code
contexts for which PROMPTER is able to retrieve a relevant Stack Overflow discussion in the
first position. Since PROMPTER recommends only the top ranked document, we only need
to evaluate the accuracy for that document.

To identify the best configuration we used an exhaustive combinatorial search. We mea-
sured the performance of all configurations obtained varying each weight between 0 and 1
with step size 0.01 where the weights total 1, as defined in (4). Although time-consuming,
this avoids that a possible sub-optimal calibration affects the study results. If a faster calibra-
tion were required, a search-based approach could be used, as done for information retrieval
(Lohar et al. 2013; Panichella et al. 2013) or clone detectors (Wang et al. 2013).

Such a calibration process might be highly biased by the choice of the dataset, i.e., of
the set of code contexts. We mitigate this threat by maximizing the dataset diversity, and
its representativeness of various programming problems developers could encounter: We
collected a set of problems encountered by industrial developers and Master and Bachelor
students during laboratory and project activities. For each problem, we asked the subjects
to provide a description and the code they produced before requesting or searching for
solutions.

We collected 74 code contexts, 48 from academic contexts and 26 from industry. We
randomly sampled half of them (37) for the calibration, and used the remaining 37 for the

Empir Software Eng

first evaluation of PROMPTER described in Section 3. For each of the 37 contexts used for
the calibration, we browsed Stack Overflow with the aim of finding pertinent, helpful,
discussions. More than one discussion could be identified in this phase. The set of relevant
documents manually identified represents our “gold standard” to measure the suggestion
accuracy of a specific PROMPTER’s configuration.

Table 2 reports the configuration that provides the best recommendation accuracy. The
indices with value 0.00 have been discarded from the model after completing the calibration.
We have used this configuration for the two evaluation studies. Having 74 code contexts
available (along with manually identified relevant documents), and having calibrated the
model using only 37 of them, we could have used the other 37 contexts as a test set to
automatically evaluate the performance of the ranking model. However, such an evaluation
would have been biased by our manual validation of the links between contexts and relevant
documents. We do not have such a threat in our studies, because the relevance was evaluated
by external participants (Study I), or where participants used PROMPTER in maintenance
and development tasks (Study II).

2.5 Putting it Together

The result of the PROMPTERranking model is not sufficient to determine if a discussion is
to be recommended or not. As we discussed in Section 2.1, the user can define the sensi-
tivity of PROMPTER in notifying new discussions, and we showed how the Query Service
determines if a new search is to be triggered or not. Triggering a new search and notifying
a discussion relies on two thresholds: (i) Query Entropy Threshold and (ii) Minimum Confi-
dence Threshold. The former is sent to the Query Service and defines the entropy level that
should not be exceeded by the median (or mean, depending on the user preferences) of the
terms of the query. If the value is below the threshold, a new search is triggered. The latter
defines the minimum confidence level needed for a discussion to be recommended.

Both thresholds range in the interval [0, 1]. We limited the interval to [0.1, 0.9] to pre-
vent PROMPTER from not being able to submit new searches or notify new discussions.
Whenever one uses the sensitivity slider, these values are modified in an inverse propor-
tional way. A complete slide to the right means a high-sensitive configuration with Query
Entropy Threshold at 0.9 and Minimum Confidence Threshold at 0.1, and the opposite
otherwise.

Table 2 PROMPTER Ranking Model: Best Configuration

Index Weight

Textual Similarity 0.32

Code Similarity 0.00

API Types Similarity 0.00

API Methods Similarity 0.30

Question Score 0.07

Accepted Answer Score 0.00

User Reputation 0.13

Tags Similarity 0.18

Empir Software Eng

3 Study I: Evaluating Prompter’s Recommendation Accuracy

RQ1 :To what extent are the Stack Overflow discussions identified by PROMPTER

relevant?

The goal of our first empirical study (Study I) is to evaluate, from a developer’s perspective,
the relevance of the Stack Overflow discussions identified by PROMPTER, i.e., we are inter-
ested in understanding to what extent the retrieved discussion provides useful information
to a developer working on a particular code snippet.

3.1 Study Design and Planning

The context of the study consists of participants, i.e., various kinds of developers, among
professionals and students, and objects, i.e., source code snippets and its related Stack Over-
flow discussion as identified by PROMPTER. This study aims at answering the following
research question:

We asked 55 people (industrial developers, academics, and students) to complete a ques-
tionnaire aimed at evaluating the relevance of the Stack Overflow discussions identified
by PROMPTER, by analyzing a specific code snippet. 33 participants filled in the question-
naire by answering the questionnaire through a Web application. They received the URL
of the questionnaire, along with instructions, via email. Before accessing the questionnaire,

Table 3 Study I Answers Questionnaire Summary. Percentages for Q3 and Q4 are calculated on the total
number for subjects

Question Answer Total Percentage

Job Industrial Developers 13 39 %

PhD Students 9 27 %

Master Students 7 21 %

Bachelor Students 2 6 %

Faculty 2 6 %

Q1 : Have you ever worked in industry? < 3 years 21 64 %

If yes, how long? 3-5 years 3 9 %

> 5 years 2 6 %

Never 7 21 %

Q2 : How long have you been < 3 years 5 15 %

programming in Java? 3-5 years 5 15 %

> 5 years 22 67 %

Never 1 3 %

Q3 : What kind of traditional Javadoc 22 67 %

documentation do you usually use? Official API Documentation 28 85 %

Books 9 27%

Q4 : What kind of additional StackOverflow 26 79 %

resources do you usually use? Forums 24 73 %

Mailing List 7 21 %

Others 7 21 %

Empir Software Eng

participants were required to create an account, with login credentials, and to fill in a pre-
questionnaire aimed at gathering information on their background. The answers to this
pre-questionnaire are reported in Table 3.

The majority of the participants are industrial developers (39 %) while 79 % of partici-
pants declared to have spent some years in industry. Only 18 % of participants have less than
three years of experience in Java programming while 67 % have more than five years. Most
of participants use Javadoc and API Documentation as traditional documentation, while
they mostly rely Stack Overflow and Forums as additional resources. Note that the different
background of participants is a requirement for this study, since PROMPTER should be able
to support developers having different skills, programming knowledge, and experience.

Once the participants answered the pre-questionnaire, they had to perform (up to) 37
tasks where the Web application showed a Java class and a discussion from Stack Over-
flow that PROMPTER suggested as top-1 ranked discussion among the results retrieved
when analyzing that class. Even though participants had the chance of skipping tasks, we
obtained at least 30 answers for each task. In the context of this study, we used the remain-
ing 37 code snippets manually collected as explained in the previous section. Participants
expressed their level of agreement to the claim “The code and the Stack Overflow discussion
are related”, providing a score on a five points Likert scale (Oppenheim 1992): 1 (strongly
disagree), 2 (disagree), 3 (neutral), 4 (agree), and 5 (strongly agree). In other words, the
participants had to indicate to what extent the discussion could help them in completing the
implementation task in the showed class.

Figure 6 shows an example of task from our survey. After submitting the score, partici-
pants were asked to write an optional comment to explain the rationale for their evaluation.
We gave participants four weeks to complete the questionnaire. The participants were
neither aware of the experimented technique (i.e., PROMPTER) nor how the Stack Over-
flow discussions were selected. The Web questionnaire was also designed to (i) show the
37 tasks to participants in random order to limit learning and tiredness effects, and (ii)
measure the time spent by each subject in answering each question. Response time was
collected to detect participants who provided answers in less than 10 seconds, i.e., without
carefully reading code and the Stack Overflow discussion. This was not the case for any
participant.

Fig. 6 An Example Question from the Questionnaire Assessing Discussions Retrieved by PROMPTER

Empir Software Eng

3.2 Analysis of the Results

We quantitatively analyzed participants’ answers through violin-plots (Hintze and Nelson
1998) to assess the ability of PROMPTER in identifying relevant Stack Overflow discussions
given a piece of code. Violin plots combine box-plots and kernel density functions, thus
providing a better indication of the shape of a distribution. The dot inside a violin plot
represents the median. A thick line is drawn between the lower and upper quartiles, while a
thin line is drawn between the lower and upper tails.

Figure 7 shows the violin-plots of scores provided by participants of our experiment to
each of the 37 questions composing our questionnaire (i.e., their level of agreement to the
claim “the code and the Stack Overflow discussion are related”). To understand whether

Fig. 7 Violin Plots of Scores Assigned by Participants to the Evaluated Stack Overflow Discussions

Empir Software Eng

PROMPTER excels in particular domains, we grouped the 37 tasks based on the topic/piece
of technology they are related to, instead of ordering the tasks by their number.

Overall, the analyzed Stack Overflow discussions have been considered related to the
showed Java code snippet. Specifically, 28 out of the 37 analyzed discussions (76 %)
received a median score greater or equal than 4. This indicates that participants agreed or
strongly agreed to the above reported claim. Among the remaining 9 discussions, 5 (14 %)
achieved 3 as median, meaning that participants were generally undecided about their rel-
evance to the code context, and four (10 %) were mostly marked as not relevant achieving
a median score of 2 (i.e., disagree). In the following, we discuss two examples in which
PROMPTER performed well, and a scenario in which we show its limitations.

Example 1 The question reported in Fig. 6 (question 8 in Fig. 7) is an example where the
achieved median score is 5. The class CompressByteArray—implementing the com-
pression of a byte array using the Deflater class—has been linked by PROMPTER

to the Stack Overflow discussion Compression/Decompression of Strings using the
deflater5. Among the comments left by developers to their votes, one explained her
“strongly agree” vote with the following sentence: it is a good discussion if working
on the CompressByteArray class, since it talks about compression with deflater,
decompression, but also about problems that could be experienced and possible solutions.

Example 2 Another Stack Overflow discussion felt by developers as strongly related to the
companion Java class was the one entitled Java regex email6 (question 9 in Fig. 7) and
associated to the Utility class in Listing 2:

The Utility class emulates a developer experiencing troubles in writing the method
is-Valid-Email-Address, aimed at validating through the Java regex mecha-
nism an email address provided as parameter. The regular expression stored in variable
EMAIL REGEX is wrong, and for this reason is-Valid-Email-Address is incorrect.

In the Stack Overflow discussion retrieved by PROMPTER as the most related one to
the Utility class, a user is asking help since she is experiencing a similar problem when
trying to validate an email address using Java regex. The top answer in this discussion
contains the solution to the problem in method is-Valid-Email-Address, i.e., the
correct regular expression to validate email addresses. This explains why almost all subjects
involved in our study (26 out of 32) assigned a score equal to 5 to this discussion.

5http://stackoverflow.com/questions/9542987
6http://stackoverflow.com/questions/8204680

http://stackoverflow.com/questions/9542987
http://stackoverflow.com/questions/8204680

Empir Software Eng

Example 3 Developers did not consider particularly useful the discussion Invoke only a
method of a servlet class not the whole servlet7 related to the ShoppingCartViewerCookie
servlet class (question 36 in Fig. 7). The reason why PROMPTER linked ShoppingCart-
ViewerCookie to this discussion is because it is about servlets, but not about the particular
problem the developer wants to solve (i.e., managing cookies). Instead, the discussion
explains how to invoke a single method of a servlet. This was also confirmed by one of the
participants: “the SO discussion does not mention how to use cookies”. This example shows
the limits of PROMPTER: It correctly captures the general context of the code (a developer is
working on a servlet class), but it fails to identify the problem she is experiencing when try-
ing to implement a specific feature. The same happened in the few cases where our approach
obtained low scores (questions 3, 23, and 37 in Fig. 7).

4 Study II: Evaluating Prompter with Developers

The goal of this study is to evaluate to what extent the use of PROMPTER can be useful to
developers during a development or maintenance task. The quality focus is the completeness
(and correctness) of the task a developer can perform in a limited time frame, e.g., because
of a hard deadline. The context consists of objects, i.e., participants have to perform two
tasks with/without the availability of PROMPTER. We had 12 participants (3 BSc and 3 MSc
CS students, and 6 industrial developers). Before the study, we screened the participants by
using a pre-study questionnaire, asking them about their experience in programming and
Java (the study tasks were in Java). The experience was measured in terms of (i) the num-
ber of years of Java programming, and (ii) a self-assessment based on a five-points Likert
scale (Oppenheim 1992) going from 1 (very low experience) to 5 (very high experience).
Also, we asked participants which sources of documentation they generally exploit when
programming.

Subjects Analysis All participants have at least 3 years of experience in programming,
with a maximum of 12 reached by an industrial developer and a median of 6.5. They have
a median of 4 years of Java programming experience. Participants claimed to have a good
experience in programming and Java programming with a median of four (high experience)
in both cases. Only two BSc students assessed their experience at 3 (medium), while all
the others declared a high experience (4). The sources of information mostly exploited by
participants when programming are: Stack Overflow (10 participants), Forums (8), Javadoc
(8), and Books (6).

Tasks The tasks participants have to perform are one maintenance task and one greenfield
development task (i.e., from scratch). The choice of tasks was performed taking into account
that, being the study executed within a lab, the tasks could not be too long nor complicated.

7http://stackoverflow.com/questions/13509291

http://stackoverflow.com/questions/13509291

Empir Software Eng

On the other side, the tasks could not be too simple, to avoid a “ceiling” effect, i.e., that
all participants correctly completed the tasks without problems, regardless of the use of
PROMPTER.

Maintenance Task (MT). This task required the implementation of new features in a
Java 2D arcade game, where the player controls a spaceship to destroy an attacking alien
enemy fleet. In its original implementation, the game directly starts when its Main class is
executed. We asked participants to perform the following changes:

– Change 1. When starting the game, present to the player a home screen containing two
buttons named “Start Game” and “Show Best Scores”.

– Change 2. By clicking on “Start Game”, the player can fill in a form composed of a
text box labeled with “Specify a Nickname” and a “Go!” button, that allows the user to
start the game.

– Change 3. When the game is over, the score (i.e., the number of aliens destroyed) must
be stored together with the user’s nickname in a file named scores.xml.

– Change 4. By clicking on “Show Best Scores”, the player can view the ranking of the
top 10 scores achieved ever. This data must be loaded from the previously described
file scores.xml.

Development Task (DT). For this task the participants had to create from scratch a Java
program that, given the URL of a Web page and an e-mail address, converts the HTML page
into a PDF and then send it via email to the specified address. The task consisted in three
sub-tasks aimed at implementing the following features:

– Feature 1. The program shows a form with the following input fields: (i) the URL of
an HTML Web page, (ii) an e-mail address, and (iii) the “object field” for the e-mail to
be sent.

– Feature 2. The program converts the HTML web page at the provided address in PDF,
using the three following conversion rules: (i) the content of the HTML tag <title>
must become the PDF title, using Arial font with a 16 pt size; (ii) the images in the
HTML tags must be shown center-aligned in the PDF; and (iii) the content of
the HTML tag <p> must become the PDF body, by adopting as font Arial 12 pt.

– Feature 3. Once the PDF is created, it has to be sent as attachment in an e-mail to the
specified address, with the specified object.

We did not provide to participants any indication about the strategy to follow in the
implementation of the two tasks.

4.1 Research Questions and Variables

The study aims at addressing the following research question:

RQ2:Does PROMPTER helpdeveloperstocompletetheirtaskcorrectly?

We investigate if the use of PROMPTER helps developers when performing coding
activities and in particular to what extent—within the available time frame, and when
working with or without PROMPTER—participants are able to correctly complete the task
(or part of it).

The dependent variable aimed at addressing RQ2 is the task completeness. Since it is
difficult to automatically evaluate task completeness, we asked two independent industrial
developers to act as “evaluators” and to assess task completeness by performing code review

Empir Software Eng

on each task implemented by participants. The evaluators did not know the goal of the study
nor which tasks were performed with (without) PROMPTER’s support. To help them in the
assessment, we provided a checklist aimed at assigning a fixed completeness score to each
of the sub-tasks correctly implemented by participants when working on MT and DT. The
checklist for the maintenance task was the following:

1. 15 %: The home screen containing the buttons “Start Game” and “Show Best Scores”
has been implemented.

2. 25 %: The “Start Game” button correctly works, allowing the player to insert her
nickname. Also, by clicking on “Go!” the game correctly starts.

3. 35 %: When the game is over the player score is correctly stored in the scores.xml
file.

4. 25 %: The “Show Best Scores” button works, by showing the top 10 scores.

The percentage of completeness assigned for each sub-task was proportional to its difficulty
and complexity. The evaluators were independent, and conducted a discussion in case of
diverging scores. This happened on four out of the 24 evaluated tasks and the divergence
was quickly solved by evaluators performing an additional code inspection.

The main factor and independent variable of this study is the presence or absence
of PROMPTER. Specifically, such a factor has two levels, i.e.,the availability of
PROMPTER(PR) or not (NOPR). Other factors that could influence the results are (i) the
(possible) different difficulty of the two tasks MT and DT, (ii) the participants’ (self-
assessed) Skills and (iii) Experience in Java development, and (iv) the years of Industrial
Experience (if any) they may have.

4.2 Study Design and Procedure

The study design—shown in Table 4—is a classical paired design for experiments with one
factor and two treatments. The design is conceived in a way that:

– each participant worked both with and without PROMPTER’s support,
– each participant had to perform different tasks (MT and DT) across the two sessions to

avoid learning effect,
– different participants worked with and without PROMPTER in different ordering, as well

as on the two different tasks MT and DT.

Overall, this means partitioning participants into four groups, receiving different treat-
ments in the two laboratory sessions. When assigning participants to the four groups, we
made sure that their level of experience was (roughly) uniformly distributed across groups.

We carried out a pre-laboratory briefing, in which participants were trained on the use
of PROMPTER, and the laboratory procedure was illustrated in details. However, in doing
so, we made sure not to reveal the study research questions. In addition, the training was
performed on tasks not related to MT and DT to not bias the experiment.

Table 4 Study II: Design

Session Group A Group B Group C Group D

1 MT-PR MT-NOPR DT-PR DT-NOPR

2 DT-NOPR DT-PR MT-NOPR MT-PR

Empir Software Eng

Participants had to perform the study in two sessions of 90 minutes each (i.e., participants
had a maximum of 90 minutes to complete each of the required tasks) interleaved by a 60-
minute break to avoid fatigue effects8. At the end of each session, each participant provided
the code she implemented.

To simulate a real development context, participants were allowed to use whatever they
want to complete the tasks including any material available on the Internet. After the study,
we collected qualitative information by (i) using a post-study questionnaire and afterwards,
by (ii) conducting focus-group interviews.

The post-study questionnaire was composed of: (i) three questions asking if participants
used Internet, the suggestions by PROMPTER, and their own knowledge during implementa-
tion. To answer these three questions participants used a four points scale, choosing between
absolutely yes, more yes than no, more no than yes, and absolutely no; and (ii) a question
asking participants to evaluate the relevance of the suggestions generated by PROMPTER.
In this case, we adopted a five-points Likert scale (Oppenheim 1992) going from 1 (totally
irrelevant) to 5 (very relevant).

During the focus-group interview, two of the authors and all participants discussed
together about PROMPTER, trying to point out its weaknesses and strengths. This interview
lasted 45 minutes.

4.3 Analysis Method

In the following, we describe all the statistical procedures used to analyze data of this study
and address RQ2. Analyses have been performed using the R statistical environment (Core
Team 2012). For all the used statistical tests, we consider a significance level α = 0.05.

First, we provide an overview of the distribution of task completeness values for the two
treatments PR and NOPR using box plots. In this study box plots are preferred over violin
plots since they allow to better focus on the comparison between the completeness achieved
by participants with the two treatments by not including visual details that violin plots pro-
vide. Then, we statistically compare results achieved with the two treatments. Given the
chosen (paired) design, we test the null hypothesis:

H0: there is no statistically significant difference between
the completeness achieved with and without PROMPTER’s support.

using the non-parametric Wilcoxon signed-rank test (Sheskin 2007). This is a paired test,
to be used when we need to compare related samples, as in our case where we need to
compare the completeness achieved with and without PROMPTER. Since we do not know a
priori in which direction the difference should be observed, we use a two-tailed test.

Besides testing the presence of a significant difference, we also assess the magnitude
of the observed difference using the Cliff’s delta (d) effect size (Grissom and Kim 2005)
which is an effect size measure suitable for non-parametric data. The Cliff’s d is defined as
the probability that a randomly-selected member of one sample has a higher response than
a randomly selected member of a second sample, minus the reverse probability. Cliff’s d

ranges in the interval [−1, 1] and it is considered small for 0.148 ≤ |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474.

To investigate whether PROMPTER helps differently for maintenance or development
tasks, we pairwise compare results achieved for different tasks using the Mann-Whitney
U test (equivalent to the Wilcoxon Rank Sum test) (Sheskin 2007). In this case we use an

8During the break participants did not have the chance to exchange information among them.

Empir Software Eng

unpaired test, because we cannot compare related samples, since each participant performed
a development task with PROMPTER and a maintenance task without PROMPTER, or vice
versa. Since here multiple tests have been performed, p-values have been adjusted using
Holm’s correction (Holm 1979). This procedure sorts the p-values resulting from n tests in
ascending order of values, multiplying the smallest by n, the next by n − 1, and so on.

Finally, we used permutation test (Baker 1995) to check, from a statistical standpoint,
the influence of the various co-factors and their interaction with the main factor treatment.
The permutation test is a non-parametric alternative to the two-way Analysis of Variance
(ANOVA); differently from ANOVA, it does not require data to be normally distributed.
The general idea behind such a test is that the data distributions are built and compared by
computing all possible values of the statistical test while rearranging the labels (represent-
ing the various factors being considered) of the data points. We used an implementation
available in the lmPerm R package. We have set the number of iterations of the permutation
test procedure to 500,000. Since the permutation test samples permutations of combination
of factor levels, multiple runs of the test may produce different results. We made sure to

Fig. 8 Boxplots of Completeness achieved by Participants with (Pr) and without (NoPr) PROMPTER

Empir Software Eng

choose a high number of iterations such that results did not vary over multiple executions
of the procedure.

4.4 Quantitative Analysis of the Results

Figure 8(a) shows boxplots of completeness achieved by participants when using (PR) and
when not using (NOPR) PROMPTER. As it can be noticed, participants using PROMPTER

were able to achieve a level of completeness greater than those not using it. The PR median
is 68% (mean 70%) against the 40% median (mean 46 %) of NOPR. In other words,
PROMPTER allowed participants to achieve a median additional correctness of 28 % (mean
of 24 %). The Wilcoxon paired test indicates the presence of a statistically significant dif-
ference, with a p-value lower than 0.01, hence rejecting H0. The Cliff’s d is 0.65, indicating
a large effect size.

Figure 8b and c show boxplots of completeness when focusing on results achieved
for MT and DT , respectively, to better understand where PROMPTER results particu-
larly helpful. PROMPTER helped participants in both MT and DT, increasing the median
completeness achieved for MT of 10 %, and for DT of 40 %. The results of the Mann-
Whitney unpaired two-tailed test indicates that for MT the difference is not significant
(p-value=0.23) and the effect size is 0.38 (medium), while there is statistically sig-
nificant difference for DT (p-value=0.03), with a large effect size (0.88). PROMPTER

produced much more benefits for DT, where participants implemented from scratch and
where they had to use several libraries, e.g., to parse the HTML page, to convert it
in PDF, to send an e-mail. In such a circumstance, PROMPTER provided an effective
support by pointing to Stack Overflow discussions concerning the correct usage of such
libraries.

Concerning the effect of all other co-factors, the permutation test results, reported in
Table 5, indicate that:

– Java Skills and Experience have a significant effect on the participants’ performance,
although they do not interact with the main factor. In other words, people with higher
skills and experience perform better, independently of PROMPTER;

– There is no effect nor interaction of the Industry Experience;
– Task has no direct effect on the observed results. It marginally interacts with the main

factor: As we have also explained above, and as one could have expected from Figs. 8b
and c, PROMPTER resulted more helpful for DT than for MT.

4.5 Qualitative Analysis of the Results

Results from the post-questionnaire provided us with interesting observations. First,
participants generally used Internet during the implementation of the required tasks. When
being asked, six of them answered absolutely yes, five more yes than no, and one more
no than yes. This is expected and consistent with the answers they provided to the pre-
study questionnaire. Second, most participants felt to have used their knowledge in the tasks
implementation, with four of them answering absolutely yes, six more yes than no, and two
more no than yes.

As for the question related to the use of PROMPTER’s recommendations, most of par-
ticipants answered positively. Three of them answered absolutely yes, eight more yes than
no, and two more no than yes. The latter participants explained that they received very few
PROMPTER’s recommendations, due to the fact that they spent much time on the Internet,

Empir Software Eng

Table 5 Effect of co-factors and their interaction with the main factor: results of permutation test

Java Skills

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 1 3384.38 3384.38 500,000 0.01

Java Skills 1 2566.87 2566.87 500,000 0.02

Treatment:Java Skills 1 1.88 1.88 58,583 0.94

Residuals 20 8487.50 424.38

Java Experience

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 1 3384.38 3384.38 500,000 0.01

Java Experience 1 2276.87 2276.87 500,000 0.03

Treatment:Java Experience 1 72.70 72.70 462,783 0.68

Residuals 20 8706.68 435.33

Industry Experience

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 1 3384.38 3384.38 500,000 0.02

Industry Experience 1 192.30 192.30 500,000 0.55

Treatment:Industry Experience 1 35.32 35.32 248,801 0.80

Residuals 20 10828.63 541.43

Task

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 1 3384.38 3384.38 500,000 0.02

Task 1 26.04 26.04 225,011 0.82

Treatment:Task 1 1426.04 1426.04 500,000 0.10

Residuals 20 9604.17 480.21

trying to figure out how to implement the required tasks. This resulted in wasted time dur-
ing which the code they were working on was untouched, leading PROMPTER to wait in
vain for their moves to produce suggestions. Still, these two participants agreed that the
few received recommendations were actually relevant to what they were implementing in
the IDE.

The goodness of the PROMPTER’s recommendations perceived by participants is evident
when analyzing the answers to the question concerning the relevance of the Stack Over-
flow discussions pushed by PROMPTER in the IDE. Among the twelve participants, two of
them classified the suggestions as very relevant (5), and the remaining ten as relevant (4).

We gained useful insights from the focused group interview. Participants agreed that
PROMPTER is very useful when working on tasks in which the developer has poor expe-
rience, since the information brought in the IDE by PROMPTER helps the developer in
enriching her knowledge about the task to be performed. For instance, one of the partici-
pants was experiencing problems with the repaint function provided in the JFrame by the
updateUI method. PROMPTER pushed in his IDE a Stack Overflow discussion9 exactly
related to what he was trying to implement, solving his problem. Another participant, when

9http://stackoverflow.com/questions/11640494/

http://stackoverflow.com/questions/11640494/

Empir Software Eng

starting to work on DT, observed the push notification of PROMPTER about a Stack Over-
flow discussion10 providing guidelines on how to choose the HTML parser library to use.
After reading the discussion, his choice was targeted on jsoup. Summarizing, participants
identified the following PROMPTER strengths:

– the accuracy of the suggestions and the relevance of the suggested Stack Overflow dis-
cussions;

– the user interface: clean, clear, and not invasive;
– the ease of use, and minimal training required;
– the possibility to tune the sensitivity of PROMPTER, increasing or reducing the rate of

suggestions.

Besides identifying PROMPTER strengths, the focused group interview we conducted
allowed us to also identify PROMPTER’s limitations. Specifically, participants would like to
see the following improvements in future PROMPTER releases:

– the possibility to exploit information coming not only from Stack Overflow, but also
from forums and programming tutorials available online; the current ranking model
implemented in PROMPTER considers features that are typical of Stack Overflow
discussions (e.g., question score, accepted answer score, etc), and thus it cannot be gen-
eralized to other sources of information as it is. However, the PROMPTER architecture
allows to easily include additional ranking models customized to exploit useful data
from specific sources of information (e.g., other Q&A websites).

– a way to force PROMPTER to look for specific types of discussions on Stack Overflow.
For example, participants would like the possibility to specify some key terms that
should always be considered by PROMPTER when searching for discussions on Stack
Overflow;

– the possibility to have a search field. Indeed, most participants agreed on the fact that
PROMPTER loses its usefulness if the developer has no idea on how to start coding. In
such a situation, the developer is forced to leave the IDE and surf the Web. Participants
suggested the addition of a search field in the PROMPTER user interface that allows
one to explicitly formulate and execute a query without leaving the IDE. As explained
in Section 2.1, as a result of participants’ feedback, the current version of PROMPTER

already implements a search field for manual queries.

5 PROMPTER: one Year Later

One of the main challenges when dealing with recommenders like PROMPTER is the vari-
ability of the information available. PROMPTER is mainly based on a Q&A website and

10http://stackoverflow.com/questions/3152138/

http://stackoverflow.com/questions/3152138/

Empir Software Eng

search engines. Thus, given the continuous growth of the web and its contents, our goal is
to investigate issues that pertain to the persistence of such information and the subsequent
replicability of the evaluation of approaches and tools based on information available on
online forum.

In Section 3 we presented a study aimed at validating the usefulness of the ranking model
exploited by PROMPTER (see Section 2.4). In such a study the PROMPTER’s ranking model
was used to recommend Stack Overflow’s discussions for 37 development tasks (i.e., code
snippets). Then, the relevance of the top-ranked discussion to its related task was judged
by the involved participants. After one year, we replicated Study I using the information
available online at the time of writing. In particular, Study I as described in Section 3 has
been carried out in July 2013, while its replication (described in this section) has been
performed in July 2014.

The goal is to replicate the retrieval of top recommendations for the 37 tasks considered
in Section 3 using PROMPTER, with the purpose of investigating (i) the replicability of the
study we performed and, above all (ii) to what extent the PROMPTER’s recommendations—
and consequently, its performance—may vary over time. The quality focus is the perfor-
mance variability over time of recommender systems relying on online resources, and in
particular of PROMPTER which relies on Stack Overflow and on search engines. The con-
text consists of the same 37 development tasks considered in Section 3, and a pool of 18
people (industrial developers, academics, and students) evaluating the relevance of the Stack
Overflow discussions retrieved by PROMPTER in July 2013 and July 2014.

Research questions The research questions this study aims to answer are:

– RQ3: To what extent are the Stack Overflow discussions identified by PROMPTER in
July 2013 still relevant in July 2014?

– RQ4: How is the developers’ assessment of the new recommendations compared to
those identified one year before?

The first research question (RQ3) aims at posing the premises of this study, i.e., to inves-
tigate whether starting from the same 37 code snippets used one year ago, PROMPTER

recommends a different Stack Overflow discussion for some of them (which of course may
represent a better or a worse recommendation). The results of RQ3 show that among the
37 tasks which we re-run PROMPTER on, some resulted in a different recommendation as
compared to the recommendation obtained one year before. Thus, RQ4 aims at comparing
the assessments provided by participants to both recommendations, i.e., the one provided
by PROMPTER in July 2013 and in July 2014.

5.1 Study Design and Analysis Method

The first step to answer RQ3 is to re-ask PROMPTER to retrieve and rank Stack Over-
flow discussions for each of the 37 tasks. This results in a ranked list of Stack
Overflow discussions for each of the 37 tasks.

To verify the replicability of Study I, we check for each of the 37 tasks in which position
of its related ranked list has been retrieved the Stack Overflow discussion recommended
by PROMPTER one year before as the most relevant (i.e., first in the ranked list). For matter
of fairness, the ranking model was tuned exactly as in Study I. Also, we exploited the same
entropy information we computed one year before on the Stack Overflow dump of June
2013. Our choice was dictated by the fact that the number of Stack Overflow discussions

Empir Software Eng

present in that dump was already huge (5,016,480), including a total of 105,439 different
terms.

In a perfect scenario, where Study I is fully replicable, the top Stack Overflow discussion
retrieved by PROMPTER in July 2013 for each of the 37 tasks should be still ranked in first
position in July 2014. In other words, the study should be time independent.

As for RQ4, we need to compare human-based assessment of the new recommendations
with the assessment provided to the old recommendations. Such a comparison is performed
only for the tasks on which the top-ranked Stack Overflow discussion has changed after
one year. This is because we cannot just ask the study participants to assess the new rec-
ommendations and compare such assessments with those obtained in the previous study.
This is because the assessment of the old recommendations has been performed by differ-
ent people. Thus, the results could be influenced by subjectiveness or personal levels of
experience/skills. To limit this threat, we asked the participants of this study to evaluate
both the old and new recommendations. Based on the results of RQ3, this study is limited
to those tasks (29 in total) for which the top-ranked Stack Overflow discussion provided
by PROMPTER (i.e., the recommended one) changed between Study I and this replication.
Overall, study participants assessed 58 recommendations. We adopted the same instrumen-
tation and set-up described in Section 3 by reusing the same web application to collect
participants evaluations of the PROMPTER’s recommendations. Again participants were
required to create an account and to fill in a pre-questionnaire aimed at gathering informa-
tion on their background. Of the 30 invited people, 18 completed our questionnaire. Their
answers are reported in Table 6.

Table 6 Replication Study Answers Summary

Question Answer Total Percentage

Job Industrial Developers 5 28 %

PhD Students 3 17 %

Master Students 6 33 %

Bachelor Students 3 17 %

Faculty 1 6 %

Q1 : Have you ever worked in industry? < 3 years 5 28 %

If yes, how long? 3-5 years 2 11 %

> 5 years 1 6 %

Never 10 56 %

Q2 : How long have you been < 3 years 5 28%

programming in Java 3-5 years 7 39%

> 5 years 6 33%

Never 0 0%

Q3 : What kind of traditional Javadoc 14 78%

documentation do you usually use? Official API Documentaiton 14 78 %

Books 5 28 %

Q4 : What kind of additional StackOverflow 18 100 %

resources do you usually use? Forums 14 78 %

Mailing List 0 0 %

Others 1 6 %

Empir Software Eng

Five of the involved participants are industrial developers, while eight declared to have
some years of industrial experience (Q1). Only five participants have less than three years
of experience in Java programming (Q2) and most of them rely on Javadoc and API docu-
mentation as standard sources of documentation (Q3) and on Stack Overflow and forums
as additional resources (Q4).

Following the same setup used in Study I, we make use of violin plots to summarize the
results. Also, we compare the assessment distribution for each task between the old and the
new recommended Stack Overflow discussion by using Wilcoxon paired tests (two-tailed).
In addition to that, we report the Cliff’s d (paired) effect size measures of such compar-
isons. Note that, by design, this study requires a paired analysis, because for each task each
participant evaluates both the old and new recommendation generated by PROMPTER.

5.2 RQ3: To what Extent are the Stack Overflow Discussions Identified
by Prompter in July 2013 Still Relevant in July 2014?

Table 7 reports in column PROMPTER the rank assigned by PROMPTER in July 2014 to the
top-ranked discussion retrieved in July 2013 (from now on, old top-discussion) for each of
the 37 tasks object of our study. In particular:

– if the value in column PROMPTER is “1”, this means that the top-retrieved Stack
Overflow discussion for the specific code snippet (task) did not change after one year;

– if the value in column PROMPTER is x with x > 1, this means that the top-retrieved
Stack Overflow discussion for the specific code snippet changed after one year, and
the old top-discussion is now ranked in a lower position (x);

– if the value in column PROMPTER is “-”, this means that the old top-discussion is not
retrieved at all by PROMPTER one year later (i.e., it is not present in the ranked list of
Stack Overflow discussions generated by PROMPTER).

Table 7 also reports the rank of the old top-discussion in the Google and Bing search
engines in July 2014 (i.e., one year after Study I) to better analyze the cases where
PROMPTER was not able at all to retrieve the old top-discussion (“-” in column Prompter).
As explained in Section 2, Google and Bing are exploited by PROMPTER to retrieve the
Stack Overflow discussions to rank. Thus, if Google and Bing are not able to retrieve the
old top-discussion for a task one year later, as a consequence also PROMPTER will not be
able to retrieve it We consider a Stack Overflow discussion as not retrieved by Google and
Bing if it does not appear in the first 100 retrieved Stack Overflow discussions.

Table 7 Top-rated Stack Overflow discussions re-ranked by PROMPTER one year later

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Google - 1 - - - - 10 - 1 - - 4 6 9 43 - - 4 -

Bing 3 - - - 1 - - 10 - - 1 - - - - 5 - - 2

Prompter 1 1 - - 9 - 15 3 1 - 11 5 1 3 28 3 - 3 2

Task 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Google 25 12 - - - 7 - 3 - - 53 - - - - 1 - -

Bing - - 1 - - - - - 9 - - 1 - - - - - 1

Prompter 26 1 1 - - 1 - 2 4 - 2 59 - - - 1 - 4

Empir Software Eng

The numbers shown in Table 7 highlights as only for eight of the 37 tasks PROMPTER

retrieves the same top-ranked discussion as one year before (i.e., tasks 1, 2, 9, 13, 21, 22,
25, 35). This means that after one year, PROMPTER recommends a different Stack Over-
flow discussion for 78 % of the tasks, highlighting a low replicability of Study I just one
year after.

Analyzing the 29 tasks where the recommendation provided by PROMPTER changed, it
emerges that in 13 of them (45 % of cases) PROMPTER was not able to retrieve the old top-
discussion because the employed search engines did not retrieve it anymore (i.e., tasks 3, 4,
6, 10, 17, 23, 24, 26, 29, 32, 33, 34, 36—see Table 7). This could be due to several reasons,
such as (i) the presence after one year of more related Stack Overflow discussions for the
specific task, (ii) the deletion of the old top-discussion from Stack Overflow, or (iii) changes
in the ranking algorithm exploited by the search engines. Despite the underlying reason(s)
for such a result, it is clear that the recommendations produced by tools relying on search
engines like PROMPTER are strongly influenced by changes in the output of such engines,
undermining the replicability of any type of evaluation.

Concerning the remaining 16 tasks where the PROMPTER recommendation changed, in
six cases (i.e., tasks 8,14,16,18,19,27) the old top-discussion is still ranked in the top-three
positions, even if it is no more the top-discussion. While for other kinds of recommender
this result might show some sort of stability in the recommender’s behavior (e.g., tools using
Stack Overflow discussions to document the source code (Vassallo et al. 2014)), given the
push mechanism implemented in PROMPTER (i.e., PROMPTER just pushes in the IDE the
top-ranked Stack Overflow’s discussion) also these cases represent a total different behavior
by our tool at one year of distance. The situation is even more marked on the remaining ten
tasks where the old top-discussion is ranked, in July 2014, in a much lower position.

5.3 RQ4: How is the Developers’ Assessment of the new Recommendations
Compared to Those Identified one Year Before?

Figure 9 reports violin plots related to the assessment provided by the study participants
to the old (red) and new (blue) recommendations. For the old top-ranked discussions (red
violin plots), 18 out of 29 (62 %) of the proposed discussions received a median score
greater or equal than 4, that is, people agreed (31 %) or strongly agreed (31 %) on the
statement “The code and the Stack Overflow discussion are related”. Of the remaining 11
discussions, 17 % received a rating between 2 and 4, meaning that people were generally
undecided, while 21 % received a rating lower or equal than 2.

For the new recommendations proposed by PROMPTER(blue violin plots), the results
obtained are slightly worse than the previous one, but they seem to follow the same trend.
Indeed, 15 out of 29 (52 %) of the proposed discussions received a median score greater or
equal than 4 (of those, 34 % received a median of 5, while 17 % a median of 4). For the

Empir Software Eng

Fig. 9 Violin Plots of Scores Assigned by Participants to the Old (red) and New (blue) Top-ranked Stack
Overflow discussion

remaining discussions, they equally (24 %) received a median score either between 2 and 4
(participants undecided on the quality of the pushed Stack Overflow discussion), and lower
or equal than 2.

Table 8 reports the results of the Wilcoxon tests (p-values) and Cliff’s d effect size
measures when comparing the ratings assigned by participants to the old and the new top-
ranked discussions for each of the 29 object tasks.

Based on the results of the Wilcoxon test, we divided the tasks in three categories:

(i) Improved, seven tasks for which the new top-ranked Stack Overflow discussion
achieves a statistically significant better user evaluation;

(ii) Neutral, eleven tasks where none of the two top-ranked discussions is significantly
better than the other as assessed by participants; and

(iii) Worse, eleven tasks where the old recommendation provided by PROMPTER in Study
I achieved a better user evaluation compared to the new one.

In the following we discuss the results achieved organizing the discussion by considering
the above “group of tasks” (i.e., Improved, Neutral, and Worse) trying to understand what
happened in one year, what affected the model and produced different recommendations
given the same task (i.e., code snippet).

Improved This category includes all the tasks for which the new recommendation
achieved a better participants’ assessment as compared to the old one. As reported in

Empir Software Eng

Table 8 Mann-Whitney test (p-value) and Cliff’s delta (d). The recommendation achieving the better user’
evaluations is reported in the second column: new (new recommendation), old (old recommendation), tie (not
statistically significant difference)

Status ID Best p-value d

3 new 0.0050 0.71

5 new 0.0147 0.42

14 new 0.0036 0.78

23 new 0.0261 0.50

26 new 0.0312 0.56

32 new 0.0085 0.57

Improved 33 new 0.0028 0.75

4 tie 0.7485 0.00

6 tie 0.9319 0.05

7 tie 0.1736 0.14

8 tie 0.3796 0.20

10 tie 0.1581 0.24

19 tie 0.3053 0.16

20 tie 0.3429 0.21

29 tie 0.0685 0.41

31 tie 0.0719 0.48

34 tie 0.5653 0.08

Neutral 37 tie 0.3586 0.19

11 old 0.0334 0.44

12 old 0.0070 0.59

15 old 0.0146 0.31

16 old 0.0036 0.69

17 old 0.0282 0.51

18 old 0.0017 0.59

24 old 0.0332 0.48

27 old 0.0020 0.78

28 old 0.0014 0.82

30 old 0.0031 0.73

Worse 36 old 0.0054 0.64

Table 8, for six of the tasks belonging to this category (all but task 5) the new recommen-
dations were highly preferred by participants with respect to the old recommendations (the
effect size is greater than 0.474, i.e., a large effect size).

We manually analyzed each of the new recommended Stack Overflow discussions in
this set to understand why the recommended Stack Overflow discussion changed after one
year. A very simple explanation can be given for tasks 32 and 33 where the new recom-
mended Stack Overflow discussions have been added on Stack Overflow in November 2013
and August 2013 respectively, i.e., after the dataset construction for Study I was already
completed. Thus, the new top-ranked discussions for these two tasks simply did not exist
when Study I was carried out in July 2013.

Empir Software Eng

For the remaining five tasks of this set, the old top-ranked Stack Overflow discussions
have not been modified since the construction of the data set for Study I and the new top-
ranked discussion already existed at the time Study I was performed. However, in all these
cases PROMPTER assigns (in July 2014) a higher confidence level to the new top-ranked
discussion. This is because in July 2013, when Study I was performed, the new top-ranked
discussions were not retrieved by the search engines exploited by PROMPTER (otherwise
the new top-ranked discussions would have been pushed by PROMPTER also in July 2013).
This is likely due to changes in the ranking algorithms of the exploited search engines.

Neutral This category includes all tasks for which there is no statistically significant dif-
ference in the assessment provided by participants to the old and the new PROMPTER’s
recommendations. The manual analysis of the old and new retrieved discussions highlights
as for six of the tasks in this group (i.e., tasks 6, 7, 8, 20, 34, 37) the reason for the change in
recommendation is the same discussed above for the “Improved” group, i.e.,, in July 2013
the search engines exploited by PROMPTER did not retrieve the new top-ranked discussion.

The change in recommendation for tasks 4, 10, and 31 have a similar reason: the old
top-ranked discussion exhibits a higher confidence level than the new one as assessed by
the PROMPTER’s ranking model. However, for these three tasks the search engines used by
PROMPTER do not retrieve anymore the old top-ranked discussion in July 2014. Despite
this, as assessed by participants, there is no clear difference in the quality of the old and the
new recommendations.

The last two tasks in this group are those numbered with 19 and 29. For both of them the
new top-ranked discussion already existed and was also retrieved by the search engines at
the time of Study I (i.e., July 2013). However, the PROMPTER’s ranking model assigned a
higher confidence level to the old top-ranked with respect to the new one at that time. The
situation changed at one year of distance due to modifications applied in this time period
to the new top-ranked discussion that pushed up its confidence level. To better understand,
Table 9 reports the model dump for task 19 for (i) the new top-ranked in July 2014 (column
“New”), (ii) the old top-ranked in July 2013 as well as in July 2014, since its confidence
level was unchanged during the year (column “Old”), and (iii) the new top-ranked in July
2013 (column “Original New”).

In the time period going between Study I and its replication, both the new and the old top-
ranked discussion received up votes. Note that the up votes affect the parameter Question
Score exploited by the PROMPTER’s ranking model. The old top-ranked discussion received
six up votes, while two new up votes were assigned to the new top-ranked between July
2013 and July 2014. Given the normalization used, the increment in up votes for the old
top-ranked discussion did not affect its overall confidence level. Indeed, the value of the

Table 9 Model Dump for Task 19

Metric New Old Original New

API Methods Similarity 1.00 1.00 1.00

User Reputation 0.00 0.00 0.00

Tags Similarity 0.75 0.67 0.75

Question Score 0.61 1.00 0.17

Textual Similarity 0.30 0.22 0.30

Confidence 57.52 % 56.04% 54.47 %

Empir Software Eng

Table 10 Model Dump for Task 15

Metric New Old Original New

API Methods Similarity 1.00 0.00 1.00

User Reputation 0.00 0.00 0.00

Tags Similarity 0.67 0.67 0.00

Question Score 0.17 1.00 0.17

Textual Similarity 0.25 0.25 0.25

Confidence 51.18 % 26.85 % 39.19 %

Question Score parameter for the old top-ranked discussion was already equal to 1.00 (i.e.,
the maximum score) when Study I was carried out (see Table 9). On the other hand, the
change in the Question Score for the new top-ranked discussion allows its confidence value
to increase from 54.47 % up to 57.52 %. This resulted in the overtaking of the new top-
ranked discussion over the old one in July 2014. However, as highlighted by the very similar
confidence levels and as also confirmed by participants, the two discussions have a very
similar relevance for their related task.

Worse This category includes all tasks for which the old top-ranked discussion was better
assessed by participants as compared to the new one. For all these tasks but number 15, the
Cliff’s delta obtained in the comparison is greater than 0.474, i.e., a large effect size.

Also in this case, we looked into the different tasks to understand what driven the change
in the PROMPTER’s recommendation. Task 27 is the only one where PROMPTER recom-
mends in July 2014 a Stack Overflow’s discussion that did not exist at the time of Study I
(one year before). For task 31 a change in the tags of the old top-ranked discussion hap-
pened in the year going from July 2013 to July 2014 has caused a decrease of its confidence
level (and in particular of the Tags Similarity parameter), consequently resulting in the
recommendation of the new top-ranked.

The case of task 15 is particularly interesting. Indeed, between Study I and its replication
both the old and the new top-ranked discussions have been modified. In particular, the old
discussion received 8 up votes, causing an equivalent increment in the overall score, while
the new discussion has been modified in the tags and in the body, thus altering the metrics
Tags Similarity and Textual similarity.

Table 10 reports a dump of the model values for task 15. As before, column “New” shows
the model values for the new top-ranked discussion in July 2014; column “Original New”
reports the model values for the new top-ranked discussion when Study I was performed;
and column “Old” shows the model values for the old top-ranked discussion.

Despite the changes applied to the old top-ranked discussion its model remained stable
between Study I and its replication since its Question Score was already equals to 1.00 (the
maximum) in July 2013.

The values reported in Table 10 clearly show as already in July 2013 the confidence
level for the new top-ranked discussion was higher than the confidence level for the old
one (49.22 % vs 26.85 %). This means that the new top-ranked discussion was simply not
retrieved by the exploited search engines at the time of Study I.

Finally, discussions related to tasks 11,12,16,17,18, 24, 28, 30, and 36, have not been
modified since July 2013. Thus, also in this case the PROMPTER recommendations have

Empir Software Eng

been strongly influenced by the different results generated by the search engines in the two
different time periods.

6 Threats to Validity

Construct Validity Threats to construct validity are related to the relationship between
theory and observation. In Study I and in its replication, such threats are mainly due to (i)
the fact that we mimic the code being written by a user by providing with PROMPTER a
partially-complete class, and (ii) by letting the users provide evaluations using a Likert scale.
Concerning the former, we made sure such classes were not too detailed nor too empty, to
represent realistic situations where PROMPTER could be used. Concerning the latter, this is a
standardized evaluation scale used to collect participants’ feedbacks. Having said that, Study
II overcomes the limitations of Study I mentioned above. In Study II threats to construct
validity are due to how we measured the task completeness. Certainly, we could have used
a test suite to measure the completeness in a objective manner. Conversely, code inspection
allows to evaluate partial implementations. In addition, the use of a checklist and multiple
independent evaluators limited the bias and subjectiveness.

Internal Validity Threats to internal validity are related to factors that could have
influenced the results. For Study I one factor to be considered is the knowledge of the
participants—not known a-priori—of the APIs being used in the particular task. The avail-
ability of multiple participants with different degree of experience mitigates this threat.
Also, note that students taking part in our evaluation were not evaluated based on the task
outcome, and we asked participants not to use other sources of information during the task,
e.g., to use them as a comparative source to the provided discussion. In Study II, to limit the
effect of participants’ skills and experience, we have pre-assessed them and used this infor-
mation assigning them to the four groups. We also analyze to what extent the usefulness of
PROMPTER depends on the particular task.

For the replication of Study I, there could be confounding factors that could have influ-
enced results of both RQ3 (different recommendation rankings) and RQ4 (developers’
assessment). Specifically, for what concern the ranking, we cannot exclude that the different
position (or the total disappear) of a question from the search-engine rankings may depend
on changes/optimization in the search engines themselves. Nevertheless, we believe this can
be one of the factors that affect the volatility of recommenders’ results, and that one cannot
control.

For what concerns RQ4, it is possible that for the same recommendation (already
assessed in Study I) different subjects gave a completely different evaluation. Hence, such
a recommendation could have been judged as very relevant in Study I, and not relevant at
all in the replication, or vice versa. This can happen especially because of the large differ-
ence of experience they have (Study I participants are more expert and they might require

Empir Software Eng

more advanced suggestions, whereas participants to the replication might prefer basic ones).
To verify whether such a situation could have occurred, we statistically compared—using
Mann-Whitney tests (two-tailed)—the ratings provided to the 29 recommendations by par-
ticipants to Study I and by participants to Study I replication). Results indicate the presence
of a significant difference only for tasks 11 (p-value=0.03, median old study=4, median
new study=3), 27 (p-value=0.0001, median old study=5, median new study=3), and 31
(p-value=0.02, median old study=4, median new study=2).

Conclusion Validity For Study I we mainly report descriptive statistics and violin plots
of the collected results, along with participants’ feedbacks, while for its replication, when-
ever possible, we use appropriate statistical procedures, namely Wilcoxon paired tests and
Cliff’s d effect size measures. For Study II, we used distribution-free tests (Wilcoxon, Mann-
Whitney, and permutation test) and effect size (Cliff’s d) measures, suitable for limited data
sets as in our study. Also, whenever multiple tests are used on the same data, we apply
p-value adjustment using the Holm’s procedure (Holm 1979).

External Validity Threats to external validity concern the generalizability of our findings.
In terms of participants, the study involved both professionals and students, with differ-
ent degree of experiences. Therefore, we claim the study provides a good coverage of the
potential categories of PROMPTER users, although further studies with more participants are
desirable. In terms of objects, we selected 37 tasks being different in terms of nature and
required technical knowledge. However, we cannot exclude that our results depend on the
particular choice of the tasks.

For Study II, although we selected, as participants, both students and industrial develop-
ers, it is worthwhile to replicate the study with a larger number of participants. Furthermore,
PROMPTER was only evaluated with two tasks that, although different, are not represen-
tative enough for tasks that developers would perform. We believe that Study I achieves a
better external validity whereas Study II a better construct validity. Finally, concerning the
Study I replication, it is possible that the different ranking and evaluation obtained for the
recommendations pertinent to the 29 tasks depend on these particular cases. In other words,
there might be tasks—e.g., related to emerging technology—for which recommendations
can be more ”volatile”, while other tasks—e.g., related to the usage of consolidated pro-
gramming practices—-such as Java SDK—can be relatively more stable. Therefore, further
studies can be needed to confirm or contradict the results obtained in this study.

7 Related Work

PROMPTER is a recommender system that mixes different software engineering fields,
namely code search and recommender systems. In this section we go through the research
relating to those fields and to PROMPTER.

Semantic Code Search and Code Search Engines The main usage of such search
engines is to retrieve code samples and reusable open source code from the Web. Differ-
ent researches (Bajracharya et al. 2006; Reiss 2009; Thummalapenta 2007; Thummalapenta
and Xie 2007) tackled this problem and provided the developers with the capability of
searching, ranking and adapting open source code. The mining of open source reposito-
ries has also been used to identify API and framework usage and to find highly relevant
applications to be reused (McMillan et al. 2012; McMillan et al. 2011; Thummalapenta

Empir Software Eng

and Xie 2008). Other studies analyzed the usage and the habits of the developers in
performing researches with code search engines (e.g., Koders) (Bajracharya and Lopes
2009; 2012; Linstead et al. 2007; Umarji et al. 2008), and how general purpose search
engines (e.g., Google) outperform code search engines when retrieving code samples
from the Web (Sim et al. 2011). In our work we follow an approach based on general-
purpose search engines. Differently from the work done so far on code search, we do
not target open source repositories to provide code samples and reusable code, or to
understand the usage of APIs; instead, we target the crowd knowledge provided by
the discussions in Stack Overflow as alternative source. This is because we want to
provide developers with code examples with explanations, rather than just with reusable
code components/snippets.

Recommender Systems Different typologies of recommender systems to recov-
ery traceability links, suggest relevant project artifacts, and suggest relevant code
elements in a project has been presented. Well-known examples are HIPIKAT

(Cubranic and Murphy 2003), DEEPINTELLISENCE (Holmes and Begel 2008), and EROSE

(Zimmermann et al. 2004). Other work focused on suggesting relevant documents, dis-
cussions and code samples from the web to fill the gap between the IDE and the Web
browser. Examples are CODETRAIL (Goldman and Miller 2009), MICA (Stylos and Myers
2006), FISHTAIL (Sawadsky and Murphy 2011), and DORA (Kononenko et al. 2012).
Subramanian et al. (2014) presented an approach to link different webpages of different
nature (e.g., javadoc, source code, Stack Overflow) by harnessing code identifiers. They rec-
ommend related webpages augment webpages by injecting code that modifies the original
web page.

Among the various sources available on the Web, Q&A Websites and in particular Stack
Overflow, have been the target of many recommender systems. Other tools used Stack Over-
flow as main source for recommendation systems to suggest, within the IDE, code samples
and discussions to the developer (Cordeiro et al. 2012; Rigby and Robillard 2013; Takuya
and Masuhara 2011). In our previous work we presented SEAHAWK (Ponzanelli et al. 2013a;
2013b), a prototype tool to link Stack Overflow discussions to the source code in the
IDE. The work presented here differs in several important ways, as our initial work did not
rely on a ranking model, did not feature confidence-based push notifications, but merely
tried to establish links between discussions and source code based on information retrieval
techniques (tf-idf).

The way PROMPTER interacts with search engines to retrieve discussions concerns code
context analysis and matching. Recommender systems have to identify relevant code ele-
ments to be used as source of information for the current context. Kersten and Murphy
(2006) presented MYLYN, a plugin for the Eclipse IDE that identifies relevant code elements
(e.g., classes) in a project for a given task. MYLYN tracks events (e.g., edits, commands,
selection) and use them to compute the Degree Of Interest (DOI) of a code element for a
specific task. The DOI is used, for example, to filter and reduce the number of code ele-
ments shown in the package explorer. PROMPTER focuses on the element under current
modification, thus simply requiring edit events tracking.

The automation and generation of queries from code is another aspect that relates with
PROMPTER. Holmes et al. (2005); Holmes et al. (2006); Reid and Murphy (2005) pre-
sented STRATHCONA, a tool to recommend relevant code fragments that automatically
extracts queries from structural context of the code. STRATHCONA uses different struc-
tural heuristics (e.g., target calls, inheritance, type usage) to match a code sample that is

Empir Software Eng

then presented to the developer in the IDE. In out work we take a wider approach. We
consider either the structural aspects (i.e., API Methods), textual aspects (e.g., textual sim-
ilarity), and the crowd-related aspects (e.g., user reputation) to evaluate the relevance of
Stack Overflow discussions.

Mandelin et al. (2005) devised their own query language for code fragments, introduced
the concept of jungloid, and presented PROSPECTOR, a plugin for the Eclipse IDE that
automatically infers queries from the code context, by mining signature graphs generated
from API specifications and jungloid graphs representing code. In our work, we focus on the
current element being modified by the developer. We take advantage of our own definition
of context, and we apply an entropy-based approach to generate the query.

Concerning automation, a remarkable example is the Microsoft Office assistant CLIPPY.
At its foundation in the Lumière project (Horvitz et al. 1998), Horvitz et al. developed a
bayesian user model to infer user’s needs and goal, to estimate user profiles and under-
stand when the assistant should intervene. Similarly to PROMPTER, users can modify the
frequency of intervention of the virtual assistant by moving a sensitivity bar. In our work,
we focus on similarity between the code entity at hand and Stack Overflow discussions,
where the bar sets a threshold on the minimum similarity between the discussion and the
code entity needed to push the discussion in the IDE.

Overall, we argue PROMPTER is different from the concept of recommender system
proposed so far. PROMPTER is able to automatically and silently retrieve and rank Stack
Overflow discussions relevant for the current code context. Then, it uses a configurable
“self-confidence” mechanism to push suggestions, yet providing the developer with the
possibility of consulting further relevant discussions whenever needed.

8 Conclusion and Future Work

We have presented a novel approach to turn an Integrated Development Environment (IDE)
into the developer’s programming prompter. The approach is based on (1) automatically
capturing the code context in the IDE, (2) retrieving documents from Stack Overflow, (3)
ranking the discussions according to a novel ranking model, and (4) suggesting them to the
developer when (and only if) it has enough self-confidence. We implemented our approach
in PROMPTER, a tool embodying the ideal behavior a recommender should have: a silent
observer of the developer, that only intervenes when it deems itself to have a relevant enough
suggestion, and that does not force the developer to invoke it but is always available in
case the developer needs it. Through a quantitative study (Study I), performed via an online
survey, we showed how the PROMPTER ranking model resulted to be effective in identifying
the right discussions given a code snippet to analyze.

In a second study (Study II) we evaluated PROMPTER during maintenance and
development tasks. We showed how, from a quantitative point of view, PROMPTER

revealed to significantly help developers in completing the experiment tasks and how,
from a qualitative point of view, the developer highly appreciated its features and
usability.

We also replicated Study I after one year from the original experiment. Surprisingly, the
results showed that starting from the same code snippets PROMPTER’s recommendations
changed in 78 % of cases due to the volatility of the information it mines from the web.
Despite this, the new recommendations still showed to be related to the task at hand in most
of cases. However, the results of the replication clearly highlighted that recommenders built

Empir Software Eng

on top of information mined from the web may experience strong changes in their behavior
during time. As a consequence, the replication of empirical studies aimed at evaluating such
tools and techniques could be unfeasible.

Our future research agenda focus on performing further evaluations, especially in the
context of long-term usage of PROMPTER. Also, we plan to (i) better assess the influence
of the “time factor” on the PROMPTER’s recommendations (i.e., what is the percentage of
recommendations that change after one, three, and six months?), and (ii) study actions to
limit the impact of the information volatility on PROMPTER’s recommendations (e.g., by
increasing the number of exploited search engines).

Acknowledgements Luca Ponzanelli and Michele Lanza thank the Swiss National Science foundation for
the financial support through SNF Project “ESSENTIALS”, No. 153129.

References

Anvik J, Hiew L, Murphy G (2006) Who should fix this bug? In: Proceedings of ICSE 2006, 361–370. ACM
Bacchelli A, dal Sasso T, D’Ambros M, Lanza M (2012) Content classification of development emails. In:

Proceedings of ICSE 2012, 375–385
Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley
Bajracharya S, Lopes C (2009) Mining search topics from a code search engine usage log. In: Proceedings

of MSR 2009, 111–120
Bajracharya S, Lopes C (2012) Analyzing and mining a code search engine usage log. Empir Softw Eng

17(4-5):424–466
Bajracharya S, Ngo T, Linstead E, Rigor P, Dou Y, Baldi P, Lopes C (2006) Sourcerer: A search engine for

open source code supporting structure-based search. In: Proceedings of OOPSLA 2006, 25–26
Baker RD (1995) Modern permutation test software. In: Randomization Tests. Marcel Decker
Constantine L (1995) Constantine on Peopleware. Yourdon
Cordeiro J, Antunes B, Gomes P (2012) Context-based recommendation to support problem solving in

software development. In: Proceedings of RSSE 2012, 85–89. IEEE Press
Cubranic D, Murphy G (2003) Hipikat: recommending pertinent software development artifacts. In:

Proceedings of ICSE 2003, 408–418. IEEE Press
Goldman M, Miller R (2009) Codetrail: Connecting source code and web resources. Journal of Visual

Languages & Computing
Grissom RJ, Kim JJ (2005) Effect sizes for research: A broad practical approach. Lawrence Associates
Haiduc S, Bavota G, Marcus A, Oliveto R, De Lucia A, Menzies T (2013) Automatic query reformulations for

text retrieval in software engineering. In: 35th International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013, 842–851. http://dl.acm.org/citation.cfm?id=2486898

Haiduc S, Bavota G, Oliveto R, De Lucia A, Marcus A (2012) Automatic query performance
assessment during the retrieval of software artifacts. In: IEEE/ACM International Conference on
Automated Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012, 90–99, DOI
doi:10.1145/2351676.2351690, (to appear in print)

Haiduc S, Bavota G, Oliveto R, Marcus A, De Lucia A (2012) Evaluating the specificity of
text retrieval queries to support software engineering tasks. In: 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 1273–1276, DOI
doi:10.1109/ICSE.2012.6227101, (to appear in print)

Hassan AE (2009) Predicting faults using the complexity of code changes. In: 31st International Conference
on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, 78–88, DOI
doi:10.1109/ICSE.2009.5070510, (to appear in print)

Hintze JL, Nelson RD (1998) Violin plots: A box plot-density trace synergism. Am Stat 52
(2):181–184

http://dl.acm.org/citation.cfm?id=2486898
http://dx.doi.org/10.1145/2351676.2351690
http://dx.doi.org/10.1109/ICSE.2012.6227101
http://dx.doi.org/10.1109/ICSE.2009.5070510

Empir Software Eng

Holm S (1979) A simple sequentially rejective Bonferroni test procedure. Scand J Stat 6:65–70
Holmes R, Begel A (2008) Deep intellisense: a tool for rehydrating evaporated information. In: Proceedings

of MSR 2008, 23–26. ACM
Holmes R, Walker R, Murphy G (2005) Strathcona example recommendation tool. SIGSOFT Software

Engineering Notes 30:237–240
Holmes R, Walker R, Murphy G (2006) Approximate structural context matching: An approach to

recommend relevant examples. IEEE TSE 32(12):952–970
Horvitz E, Breese J, Heckerman D, Hovel D, Rommelse K (1998) The lumière project: Bayesian

user modeling for inferring the goals and needs of software users. In: Proceedings of UAI 1998 (14th
Conference on Uncertainty in Artificial Intelligence), 256–265. Morgan Kaufmann Publishers Inc

Kersten M, Murphy G (2006) Using task context to improve programmer productivity. In: Proceedings of
FSE-14, 1–11. ACM Press

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In:
Proceedings of ICSE 2007, 344–353. IEEE CS Press

Kononenko O, Dietrich D, Sharma R, Holmes R (2012) Automatically locating relevant programming help
online. In: Proceedings of VL/HCC 2012, 127–134

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: a study of developer work habits. In:
Proceedings of ICSE 2006, 492–501. ACM

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Cybern Control
Theory 10:707–710

Linstead E, Rigor P, Bajracharya S, Lopes C, Baldi P (2007) Mining internet-scale software repositories. In:
In Proceedings of NIPS 2007. MIT Press

Lohar S, Amornborvornwong S, Zisman A, Cleland-Huang J (2013) Improving trace accuracy through data-
driven configuration and composition of tracing features. In: Proceedings of ESEC/FSE 2013, 378–388.
ACM

Mamykina L, Manoim B, Mittal M, Hripcsak G, Hartmann B Design lessons from the fastest q&a site
in the west. In: Proceedings of CHI 2011, 2857–2866. ACM

Mandelin D, Xu L, Bodı́k R, Kimelman D (2005) Jungloid mining: Helping to navigate the api jungle. In:
Proceedings of PLDI 2005 (16th ACM SIGPLAN Conference on Programming Language Design and
Implementation), 48–61. ACM

Manning C, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University Press
McMillan C, Grechanik M, Poshyvanyk D, Fu C, Xie Q (2012) A source code search engine for finding

highly relevant applications. IEEE TSE 38(5):1069–1087
McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio: finding relevant functions and their

usage. In: Proceedings of ICSE 2011, 111–120. ACM
Oppenheim AN (1992) Questionnaire design, interviewing and attitude measurement. Pinter, London
Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to effectively use topic

models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of
ICSE 2013, 522–531. ACM/IEEE

Ponzanelli L, Bacchelli A, Lanza M (2013) Leveraging crowd knowledge for software comprehension and
development. In: Proceedings of CSMR 2013, 59–66

Ponzanelli L, Bacchelli A, Lanza M (2013) Seahawk: Stack overflow in the ide. In: Proceedings of ICSE
2013, Tool Demo Track, 1295–1298. IEEE

Core Team R (2012) R: a language and environment for statistical computing. Vienna, Austria. http://www.
R-project.org. ISBN 3-900051-07-0

Reid RH, Murphy GC (2005) Using structural context to recommend source code examples. In: Proceedings
of ICSE 2005, 117–125. ACM

Reiss S (2009) Semantics-based code search. In: Proceedings of ICSE 2009, 243–253. IEEE
Rigby P, Robillard M (2013) Discovering essential code elements in informal documentation. In: Proceedings

of ICSE 2013, 832–841
Robertson S (2004) Understanding inverse document frequency: On theoretical arguments for IDF. J Doc

60:2004
Robillard M, Walker R, Zimmermann T (2010) Recommendation systems for software engineering. IEEE

Software

http://www.R-project.org
http://www.R-project.org

Empir Software Eng

Sawadsky N, Murphy G (2011) Fishtail: from task context to source code examples. In: Proceedings of TOPI
2011, 48–51. ACM

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. 625–56
Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures (fourth edition).

Chapman & All
Sim S, Umarji M, Ratanotayanon S, Lopes C (2011) How well do search engines support code retrieval on

the web ACM TOSEM:1–25
Stylos J, Myers BA (2006) Mica: A web-search tool for finding api components and examples. In:

Proceedings of VL/HCC 2006, 195–202
Subramanian S, Inozemtseva L, Holmes R (2014) Live api documentation. In: Proceedings of ICSE 2014

(36th International Conference on Software Engineering), ICSE 2014, 643–652. ACM
Takuya W, Masuhara H (2011) A spontaneous code recommendation tool based on associative search. In:

Proceedings of SUITE 2011, pp. 17–20. ACM
Thummalapenta S (2007) Exploiting code search engines to improve programmer productivity. In:

Proceedings of OOPSLA 2007, 921–922. ACM
Thummalapenta S, Xie T (2007) Parseweb: a programmer assistant for reusing open source code on the web.

In: Proceedings of ASE 2007, 204–213. ACM
Thummalapenta S, Xie T (2008) Spotweb: Detecting framework hotspots and coldspots via mining open

source code on the web. In: Proceedings of ASE 2008, 327–336. IEEE
Umarji M, Sim S, Lopes C (2008) Archetypal internet-scale source code searching. In: Proceedings of OSS

2008, 257–263
Vassallo C, Panichella S, Di Penta M, Canfora G (2014) Codes: mining source code descriptions from

developers discussions. In: 22nd International Conference on Program Comprehension, ICPC 2014,
Hyderabad, India, June 2-3, 2014, 106–109

Wang T, Harman M, Jia Y, Krinke J (2013) Searching for better configurations: a rigorous approach to clone
evaluation. In: Proceedings of ESEC/FSE 2013, 455–465. ACM

Wettel R, Marinescu R (2005) Archeology of code duplication: recovering duplication chains from small
duplication fragments. In: Proceedings of SYNASC 2005, 63–70

Williams L (2001) Integrating pair programming into a software development process. In: Proceedings of
CSEET 2001, 27–36. IEEE

Zimmermann T, Weißgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software changes.
In: Proceedings of ICSE 2004, 563–572. IEEE

Luca Ponzanelli is a PhD student at the University of Lugano, Switzerland since September 2012. He is cur-
rently working in the REVEAL research group under the supervision of Prof. Dr. Michele Lanza. He received
his master’s degree from the University of Lugano, in 2012, and he received his bachelor’s degree from the
University of Milano-Bicocca in 2010. His research interests include mining software repositories, software
maintenance, and recommender systems for software engineering. He serves as web chair for MSR’16 and
SANER’16.

Empir Software Eng

Gabriele Bavota is Assistant Professor at the Free University of Bozen-Bolzano, Italy. He received the PhD
degree in computer science from the University of Salerno, Italy, in 2013. From January 2013 to October
2014 he has been research fellow at the University of Sannio, Italy. His research interests include software
maintenance, empirical software engineering, mining software repository, refactoring of software systems,
and information retrieval. He is author of over 60 papers appeared in international journals, conferences and
workshops. He serves as a Program Co-Chair for ICPC’16 and SCAM’16. He also serves and has served as
organizing and program committee member of international conferences in the field of software engineering,
such as ICSME, MSR, ICPC, SANER, SCAM, and others. He is a member of IEEE Computer Society and
ACM.

Massimiliano Di Penta is associate professor at the University of Sannio, Italy since December 2011.
Between Before that, he was assistant professor in the same University since December 2004. His research
interests include software maintenance and evolution, mining software repositories, empirical software engi-
neering, search-based software engineering, and service-centric software engineering. He is author of over
200 papers appeared in international journals, conferences and workshops. He serves and has served in
the organizing and program committees of over 100 conferences such as ICSE, FSE, ASE, ICSM, ICPC,
GECCO, MSR WCRE, and others. He has been general co-chair of various events, including the 10th IEEE
Working Conference on Source Code Analysis and Manipulation (SCAM 2010), the 2nd International Sym-
posium on Search-Based Software Engineering (SSBSE 2010), and the 15th Working Conference on Reverse
Engineering (WCRE 2008). Also, he has been program chair of events such as the 28th IEEE International
Conference on Software Maintenance (ICSM 2012), the 21st IEEE International Conference on Program
Comprehension (ICPC 2013), the 9th and 10th Working Conference on Mining Software Repository (MSR
2013 and 2012), the 13th and 14th Working Conference on Reverse Engineering (WCRE 2006 and 2007), the
1st International Symposium on Search-Based Software Engineering (SSBSE 2009), and other workshops.

He is currently member of the steering committee of ICSME, MSR, SSBSE, and PROMISE. Previously,
he has been steering committee member of other conferences, including ICPC, SCAM, and WCRE. He is
in the editorial board of IEEE Transactions on Software Engineering, the Empirical Software Engineering
Journal edited by Springer, and of the Journal of Software: Evolution and Processes edited by Wiley.

Empir Software Eng

Rocco Oliveto is an Associate Professor at University of Molise (Italy), where he is also the Chair of
the Computer Science program and the Director of the Laboratory of Computer Science and Scientific
Computation (CSSC Lab).

He co-authored over 100 papers on topics related to software traceability, software maintenance and evo-
lution, search-based software engineering, and empirical software engineering. His activities span various
international software engineering research communities. He has served as organizing and program com-
mittee member of several international conferences in the field of software engineering. He was program
co-chair of ICPC 2015, TEFSE 2015 and 2009, SCAM 2014, WCRE 2013 and 2012. He was also keynote
speaker at MUD 2012.

Michele Lanza is a full professor at the faculty of informatics of the University of Lugano, where he founded
the REVEAL research group in 2004.

He co-authored over 150 journal and conference publications and the book Object-Oriented Metrics in
Practice.

His activities span various international software engineering research communities. He has served on the
program committees of ICSE, FSE, ICSME, ICPC, MSR and many other conferences, and as program co-
chair of ICSM 2010, VISSOFT 2009, MSR 2008, IWPSE 2007, and MSR 2007. He was keynote speaker at
MSR 2010, CBSOFT/SBES 2011, BENEVOL 2011, and CSMR 2013. He is a board member of CHOOSE
(Swiss Group for Object-Oriented Systems and Environments), and vice-president of the Moose associa-
tion. He is a steering committee member of VISSOFT (International Workshop on Visualizing Software for
Understanding and Analysis), and of the ERCIM working group on software evolution.

	Prompter
	Abstract
	Introduction
	Structure of the Paper

	Prompter
	User Interface
	Explicit Query Writing
	Explicit Invocation

	Architecture and Control Flow
	Retrieval Approach
	Tracking Code Contexts in the IDE
	Generating Queries from Code Context

	Prompter Ranking Model
	Ranking Model Definition
	Calibration of the ranking model

	Putting it Together

	Study I: Evaluating Prompter's Recommendation Accuracy
	Study Design and Planning
	Analysis of the Results

	Study II: Evaluating Prompter with Developers
	Subjects Analysis
	Tasks

	Research Questions and Variables
	Study Design and Procedure
	Analysis Method
	Quantitative Analysis of the Results
	Qualitative Analysis of the Results

	Prompter: one Year Later
	Research questions
	Study Design and Analysis Method
	RQ3: To what Extent are the Stack Overflow Discussions Identified by Prompter in July 2013 Still Relevant in July 2014?
	RQ4: How is the Developers' Assessment of the new Recommendations Compared to Those Identified one Year Before?
	Improved
	Neutral
	Worse

	Threats to Validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	External Validity

	Related Work
	Semantic Code Search and Code Search Engines
	Recommender Systems

	Conclusion and Future Work
	Acknowledgements
	References

