
Editor: Jane Cleland-Huang
DePaul University
jhuang@cs.depaul.edu

102 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

REQUIREMENTS
Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

IF MEASURED BY the number of pub-
lished papers, defect prediction has be-
come an important research � eld over
the past decade, with many research-
ers continuously proposing novel ap-
proaches to predict defects in software
systems. However, most of these ap-
proaches have had a noticeable lack of
impact on industrial practice. We believe
that the impact isn’t there because some-
thing is intrinsically wrong in how de-
fect prediction approaches are evaluated.

Act I: Empirical Quicksand

Something is rotten in the state of
Denmark —Shakespeare, The Trag-
edy of Hamlet, Prince of Denmark,
act I, scene 4

In this case, Denmark isn’t a Scandina-
vian country—it’s the research � eld called
defect prediction. We re� ect on what we
consider its intrinsic conceptual � aw. This
� aw pertains not only to defect predic-
tion but also to other research � elds with
which defect prediction shares a peculiar
commonality. As you’ll see, this common-
ality pertains to the infamous evaluation
that has become a necessary evil of mod-
ern software engineering research.

We’re heading into dangerous territory
here, so we’d better take this one step at a
time. First, what is defect prediction?

Defect prediction deals with the cre-
ation and empirical evaluation of ap-
proaches to know or estimate in ad-
vance where defects will appear in a
system. The earliest approaches, de-
vised in the 1980s, used simple regres-
sion models based on software metrics.1

Since then, the � eld has seen the inven-
tion of a staggering number of novel and
more re� ned approaches. This was es-
pecially the case during the rise of the
research � eld of mining software reposi-
tories, which in turn gave birth to what
some people called “empirical software
engineering 2.0.”

Our goal isn’t to criticize empirical
software engineering as a whole, which
has many reasons to exist. However, de-
fect prediction is an archetypal example
of empirical software engineering re-
search where in the middle of the many
trees that need to be felled, the research
community has lost sight of the forest.
This is especially true concerning the
evaluation of novel approaches, which
seems to have surpassed the actual tech-
nical core of any approach in terms of
importance and acceptance.

The Tragedy of Defect
Prediction, Prince of
Empirical Software
Engineering Research
Michele Lanza, Andrea Mocci, and Luca Ponzanelli

SOUNDING BOARD

 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 103

If you survey the many publica-
tions on defect prediction, it’s hard
not to notice how important the
evaluation is, filled with precision
and recall percentages, p-values, and
other success metrics. What’s wrong
with that, you might ask? Indeed, we
don’t argue against evaluating such
approaches; quite the contrary. But
we do maintain that the de facto way
of evaluating them is intrinsically
flawed. A tiny spoiler: “If my calcu-
lations are correct, when this baby
hits 88 miles per hour, you’re gonna
see some serious ****.”

Act II: Small-Scale Utopia
Assume for a second that the world
is perfect (except for the existence
of software bugs). In such a world,
a bug consists of a specific software
change, which leads to a defect,
which someone then reports through
a bug report. In reaction to the re-
ported bug, a developer provides a
fix, effectively closing the process.

This process is not only a sim-
plification but also an idealization.

The actual process is much more
complex and probably never as-
sumes the form we describe here.
For example, the typical bug report
life cycle allows loops to happen
when bugs get reopened.

However, several defect predic-
tion approaches rely on this simpli-
fied process, and for the sake of our
thought experiment, we assume this
process too.

The pieces of that assumption that
are important for validating defect
prediction approaches are primarily
the bug report and secondarily the
change and fix. This is because the re-
port is the actual artifact that can be
mined with ease from issue tracker re-
positories and because the change and
the fix can be recovered—with some
effort—from the versioning system.

(An intriguing conceptual ques-
tion pertains to the defect itself. In
reality, defect prediction approaches
are validated not on the actual de-
fects but on the creation of bug re-
ports. In short, from the perspective
of defect prediction evaluation, if

there’s no bug report, there’s no bug.)
We now take this process and

turn it into the (admittedly abstract)
concept of “a bug,” ignoring its in-
ternal details. We do this to widen
the context in the next act.

Act III: Large-Scale Dystopia
When researchers evaluate defect
prediction approaches, they use as
ground truth the “past”—all the
bugs reported during a reference time
period. The present is placed into
the past (which thus becomes a new
present), and the predictor is run into
the future, which in reality is the past
as seen from the actual present.

Defect prediction approaches now
try, irrespective of their underlying
technicalities, to predict where (for
example, in which class or module)
defects will appear. To do so, they
use the fix that was a response to
the bug report and establish which
parts of the system changed during
the fix. If those parts match the pre-
dicted part of the system, the predic-
tor worked correctly.

SOUNDING BOARD

104 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

(Someone could point out that
establishing what changed during a
� x, and whether all those changes
were a “response” to the bug report,
isn’t an exact science and is often
based on [imprecise] heuristics.)

The evaluation process allows for
an easy way to measure defect pre-
diction approaches’ performance—
for example, using such common
metrics as precision, recall, and F-
measures. On the basis of those met-
rics, the approaches are then com-
pared to each other.

(It’s still sad but true that few us-
able benchmark datasets exist, so

any comparison between different
approaches on diverse datasets is an
apples-and-oranges comparison with
little validity.)

So far, so good. So what? The
problem is that software is devel-
oped by humans, and more impor-
tant, it evolves. Any decision in the
system—for example, a bug � x or
any other change—impacts, directly
or indirectly, future decisions over
the development time. And time is
the keyword for our next act.

Act IV: 88 MPH
If a predictor were put into produc-
tion as an in vivo tool, it would pro-
duce recommendations. Developers
would see these recommendations,
which would in� uence and (hope-
fully) signi� cantly affect what they
do from that moment on.

In other words, if a defect pre-
dictor predicted a bug in a particu-
lar area of the system, a developer
would look at that area. However,
this simple reaction has an in� uence,
and potentially a cascading effect,
on anything that follows in time.

Of course, you might ask, aren’t
we pointing out the obvious here?
Indeed: a useful recommender must
have some impact on a system’s evo-
lution. Well, here’s the problem. As
we mentioned before, defect predic-
tion approaches are evaluated on
the past history of a system’s bugs,
where that history is treated as the

future. In essence, the predictors are
being evaluated in a way equivalent
to the situation in which they act
as if developers will completely ig-
nore them. But, if the point of an ap-
proach (that is, research) is to have
some impact on a system (that is, the
real world), doesn’t this contradict
that goal?

If a predictor correctly predicted
a bug, that recommendation would
impact any subsequent bug and
might produce unexpected conse-
quences. Two possibilities are that
subsequent bugs either don’t appear
where they previously appeared or
don’t appear at all. In essence (apolo-
gies for the upcoming high-� ying
wording), a real prediction perturbs
the space–time continuum.

Let’s � y at a lower altitude, so to
speak. Bugs are causally connected

because software is produced by
humans, and if they’re doing some-
thing, they’re not doing something
else. Short of supporting the theory
of parallel universes, the main mes-
sage is this:

The evaluation of defect prediction
approaches using a system’s bug
history is intrinsically � awed.

Tying back to the spoiler: defect
prediction approaches are evalu-
ated using the fading-picture met-
aphor from the movie Back to the
Future. Although the movie is very
nice, its time travel logic is full of
evident paradoxes.

Act V: The Angel’s Advocate
Because the devil’s advocate seems to
be a coauthor of this article, we sum-
mon the help of the angel’s advocate,
who dislikes what we claim.

“Not all bugs are causally con-
nected: your base assumption is
wrong. If two bugs reside in very
distant parts of a system and aren’t
structurally related, they have no
causal connection whatsoever.”

We concede that if two bugs ap-
pear at very close points in time in
very distant parts of the system,
they might have no causal connec-
tion. However, given enough time
distance, even bugs that are far from
each other and aren’t structurally re-
lated are causally connected because
software is developed by humans
who follow a process.

“If a defect prediction approach
uses only the code’s structural prop-
erties, you can ignore or factor out
the recommendations’ impact on the
system’s evolution.”

Indeed, if the recommendations
are based on only an entity’s struc-
tural properties, the impact of the
system’s evolution on the code met-

The evaluation of defect prediction
approaches using a system’s bug
history is intrinsically � awed.

SOUNDING BOARD

 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 105

rics can be factored out. In fact, the
more the predictor recommends the
entities that have been really fixed,
the more the predicted evolution re-
sembles the one that was observed
in the system. However, current ap-
proaches don’t rely only on purely
structural metrics. If we consider
Marco D’Ambros and his colleagues’
study,2 process metrics actually ex-
hibit the best performance and low-
est variability, outperforming other
metrics based on source code. This
is because process metrics are in-
trinsically evolutionary and are thus
strongly influenced by any change of
the development process itself.

“You’re wrong; a simple n-fold
cross validation on the bug dataset
is enough to do away with all this
time-traveling nonsense.”

Such cross validation can’t take
into account the defect predictor’s
potential impact on the system. In
other words, recombining the train-
ing and testing datasets with n-fold
cross validation won’t help you re-
construct the defect predictor’s po-
tential impact on the system by
simulating the changes that such a
recommender would make. Without
an in vivo adoption, you simply can’t
measure the predictor’s effect.

“Wait; if you did defect predic-
tion research yourself, aren’t you bit-
ing the hand that fed you?”

Yes, we are. We don’t deny that,
nor do we regret it. Some of our
most impactful (that is, cited) papers
are in that area. Back in those days,
we believed that was the way to do
things. This insight of ours came
only recently, but hey, better late
than never.

Epilog
Although this article’s tone isn’t ex-
actly serious, the point we’re mak-
ing is a serious and honest criticism

of how defect prediction approaches
have been evaluated all these years.

We reiterate that we’re not criti-
cizing defect prediction approaches
per se. In fact, many approaches are
based on sound, meaningful assump-
tions. These are some well-known
conjectures formulated by research-
ers: bugs might appear in parts of
the system where bugs have already
occurred,3 in parts that change fre-
quently,4 or where complex changes
have been performed.5

These conjectures are clearly
reasonable and well founded, and
it’s interesting to investigate them
to prove or disprove them. In the
end, the overall goal has been and
remains to advance the state of the
art and the software engineering
discipline, in which the engineer-
ing is to be considered as a set of
proven best practices.

The problem isn’t the approaches.
The problem lies in how the ap-
proaches are evaluated and how
they’re being compared to each other.

The unpleasant truth is that a
field such as defect prediction makes
sense only if it’s used in vivo.

In other words, researchers
should seriously consider putting
their predictors out into the real
world and having them used by de-
velopers who work on a live code
base. Of course, this comes at a high
cost. But then again, consider that if
a predictor manages to correctly pre-
dict one single bug, this will have a
real, concrete impact. That’s more
than can be said about any approach
relying on in vitro validation, no
matter how extensive.

References
1. V.Y. Shen et al., “Identifying Error-

Prone Software: An Empirical

Study,” IEEE Trans. Software Eng.,

vol. 11, no. 4, 1985, pp. 317–324.

2. M. D’Ambros, M. Lanza, and R.

Robbes, “Evaluating Defect Predic-

tion Approaches: A Benchmark and

an Extensive Comparison,” Empiri-

cal Software Eng., vol. 17, nos. 4–5,

2012, pp. 531–577.

3. S. Kim et al., “Predicting Faults from

Cached History,” Proc. 29th Int’l

Conf. Software Eng. (ICSE 07), 2007,

pp. 489–498.

4. N. Nagappan and T. Ball, “Use of

Relative Code Churn Measures to

Predict System Defect Density,” Proc.

27th Int’l Conf. Software Eng. (ICSE

05), 2005, pp. 284–292.

5. A.E. Hassan, “Predicting Faults

Using the Complexity of Code

Changes,” Proc. 31st Int’l Conf.

Software Eng. (ICSE 09), 2009, pp.

78–88.

MICHELE LANZA is a full professor and the

head of the REVEAL (Reverse Engineering, Visu-

alization, Evolution Analysis Lab) research group

at the Università della Svizzera italiana. Contact

him at michele.lanza@usi.ch.

ANDREA MOCCI is a postdoctoral researcher

in the REVEAL research group at the Università

della Svizzera italiana. Contact him at andrea

.mocci@usi.ch.

LUCA PONZANELLI is a PhD student in infor-

matics and a member of the REVEAL research

group at the Università della Svizzera italiana.

Contact him at luca.ponzanelli@usi.ch.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

