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SOUNDING BOARD

IF MEASURED BY the number of pub-
lished papers, defect prediction has be-
come an important research � eld over 
the past decade, with many research-
ers continuously proposing novel ap-
proaches to predict defects in software 
systems. However, most of these ap-
proaches have had a noticeable lack of 
impact on industrial practice.  We believe 
that the impact isn’t there because some-
thing is intrinsically wrong in how de-
fect prediction approaches are evaluated.

Act I: Empirical Quicksand

Something is rotten in the state of 
Denmark —Shakespeare, The Trag-
edy of Hamlet, Prince of Denmark, 
act I, scene 4

In this case, Denmark isn’t a Scandina-
vian country—it’s the research � eld called 
defect prediction. We re� ect on what we 
consider its intrinsic conceptual � aw. This 
� aw pertains not only to defect predic-
tion but also to other research � elds with 
which defect prediction shares a peculiar 
commonality. As you’ll see, this common-
ality pertains to the infamous evaluation 
that has become a necessary evil of mod-
ern software engineering research.

We’re heading into dangerous territory 
here, so we’d better take this one step at a 
time. First, what is defect prediction?

Defect prediction deals with the cre-
ation and empirical evaluation of ap-
proaches to know or estimate in ad-
vance where defects will appear in a 
system. The earliest approaches, de-
vised in the 1980s, used simple regres-
sion models based on software metrics.1

Since then, the � eld has seen the inven-
tion of a staggering number of novel and 
more re� ned approaches. This was es-
pecially the case during the rise of the 
research � eld of mining software reposi-
tories, which in turn gave birth to what 
some people called “empirical software 
engineering 2.0.”

Our goal isn’t to criticize empirical 
software engineering as a whole, which 
has many reasons to exist. However, de-
fect prediction is an archetypal example 
of empirical software engineering re-
search where in the middle of the many 
trees that need to be felled, the research 
community has lost sight of the forest. 
This is especially true concerning the 
evaluation of novel approaches, which 
seems to have surpassed the actual tech-
nical core of any approach in terms of 
importance and acceptance.
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If you survey the many publica-
tions on defect prediction, it’s hard 
not to notice how important the 
evaluation is, filled with precision 
and recall percentages, p-values, and 
other success metrics. What’s wrong 
with that, you might ask? Indeed, we 
don’t argue against evaluating such 
approaches; quite the contrary. But 
we do maintain that the de facto way 
of evaluating them is intrinsically 
flawed. A tiny spoiler: “If my calcu-
lations are correct, when this baby 
hits 88 miles per hour, you’re gonna 
see some serious ****.”

Act II: Small-Scale Utopia
Assume for a second that the world 
is perfect (except for the existence 
of software bugs). In such a world, 
a bug consists of a specific software 
change, which leads to a defect, 
which someone then reports through 
a bug report. In reaction to the re-
ported bug, a developer provides a 
fix, effectively closing the process.

This process is not only a sim-
plification but also an idealization. 

The actual process is much more 
complex and probably never as-
sumes the form we describe here. 
For example, the typical bug report 
life cycle allows loops to happen 
when bugs get reopened.

However, several defect predic-
tion approaches rely on this simpli-
fied process, and for the sake of our 
thought experiment, we assume this 
process too.

The pieces of that assumption that 
are important for validating defect 
prediction approaches are primarily 
the bug report and secondarily the 
change and fix. This is because the re-
port is the actual artifact that can be 
mined with ease from issue tracker re-
positories and because the change and 
the fix can be recovered—with some 
effort—from the versioning system.

(An intriguing conceptual ques-
tion pertains to the defect itself. In 
reality, defect prediction approaches 
are validated not on the actual de-
fects but on the creation of bug re-
ports. In short, from the perspective 
of defect prediction evaluation, if 

there’s no bug report, there’s no bug.)
We now take this process and 

turn it into the (admittedly abstract) 
concept of “a bug,” ignoring its in-
ternal details. We do this to widen 
the context in the next act.

Act III: Large-Scale Dystopia
When researchers evaluate defect 
prediction approaches, they use as 
ground truth the “past”—all the 
bugs reported during a reference time 
period. The present is placed into 
the past (which thus becomes a new 
present), and the predictor is run into 
the future, which in reality is the past 
as seen from the actual present.

Defect prediction approaches now 
try, irrespective of their underlying 
technicalities, to predict where (for 
example, in which class or module) 
defects will appear. To do so, they 
use the fix that was a response to 
the bug report and establish which 
parts of the system changed during 
the fix. If those parts match the pre-
dicted part of the system, the predic-
tor worked correctly.
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(Someone could point out that 
establishing what changed during a 
� x, and whether all those changes 
were a “response” to the bug report, 
isn’t an exact science and is often 
based on [imprecise] heuristics.)

The evaluation process allows for 
an easy way to measure defect pre-
diction approaches’ performance—
for example, using such common 
metrics as precision, recall, and F-
measures. On the basis of those met-
rics, the approaches are then com-
pared to each other.

(It’s still sad but true that few us-
able benchmark datasets exist, so 

any comparison between different 
approaches on diverse datasets is an 
apples-and-oranges comparison with 
little validity.)

So far, so good. So what? The 
problem is that software is devel-
oped by humans, and more impor-
tant, it evolves. Any decision in the 
system—for example, a bug � x or 
any other change—impacts, directly 
or indirectly, future decisions over 
the development time. And time is 
the keyword for our next act.

Act IV: 88 MPH
If a predictor were put into produc-
tion as an in vivo tool, it would pro-
duce recommendations. Developers 
would see these recommendations, 
which would in� uence and (hope-
fully) signi� cantly affect what they 
do from that moment on.

In other words, if a defect pre-
dictor predicted a bug in a particu-
lar area of the system, a developer 
would look at that area. However, 
this simple reaction has an in� uence, 
and potentially a cascading effect, 
on anything that follows in time.

Of course, you might ask, aren’t 
we pointing out the obvious here? 
Indeed: a useful recommender must 
have some impact on a system’s evo-
lution. Well, here’s the problem. As 
we mentioned before, defect predic-
tion approaches are evaluated on 
the past history of a system’s bugs, 
where that history is treated as the 

future. In essence, the predictors are 
being evaluated in a way equivalent 
to the situation in which they act 
as if developers will completely ig-
nore them. But, if the point of an ap-
proach (that is, research) is to have 
some impact on a system (that is, the 
real world), doesn’t this contradict 
that goal?

If a predictor correctly predicted 
a bug, that recommendation would 
impact any subsequent bug and 
might produce unexpected conse-
quences. Two possibilities are that 
subsequent bugs either don’t appear 
where they previously appeared or 
don’t appear at all. In essence (apolo-
gies for the upcoming high-� ying 
wording), a real prediction perturbs 
the space–time continuum.

Let’s � y at a lower altitude, so to 
speak. Bugs are causally connected 

because software is produced by 
humans, and if they’re doing some-
thing, they’re not doing something 
else. Short of supporting the theory 
of parallel universes, the main mes-
sage is this:

The evaluation of defect prediction 
approaches using a system’s bug 
history is intrinsically � awed.

Tying back to the spoiler: defect 
prediction approaches are evalu-
ated using the fading-picture met-
aphor from the movie Back to the 
Future. Although the movie is very 
nice, its time travel logic is full of 
evident paradoxes.

Act V: The Angel’s Advocate 
Because the devil’s advocate seems to 
be a coauthor of this article, we sum-
mon the help of the angel’s advocate, 
who dislikes what we claim.

“Not all bugs are causally con-
nected: your base assumption is 
wrong. If two bugs reside in very 
distant parts of a system and aren’t 
structurally related, they have no 
causal connection whatsoever.”

We concede that if two bugs ap-
pear at very close points in time in 
very distant parts of the system, 
they might have no causal connec-
tion. However, given enough time 
distance, even bugs that are far from 
each other and aren’t structurally re-
lated are causally connected because 
software is developed by humans 
who follow a process.

“If a defect prediction approach 
uses only the code’s structural prop-
erties, you can ignore or factor out 
the recommendations’ impact on the 
system’s evolution.”

Indeed, if the recommendations 
are based on only an entity’s struc-
tural properties, the impact of the 
system’s evolution on the code met-

The evaluation of defect prediction 
approaches using a system’s bug 
history is intrinsically � awed.
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rics can be factored out. In fact, the 
more the predictor recommends the 
entities that have been really fixed, 
the more the predicted evolution re-
sembles the one that was observed 
in the system. However, current ap-
proaches don’t rely only on purely 
structural metrics. If we consider 
Marco D’Ambros and his colleagues’ 
study,2 process metrics actually ex-
hibit the best performance and low-
est variability, outperforming other 
metrics based on source code. This 
is because process metrics are in-
trinsically evolutionary and are thus 
strongly influenced by any change of 
the development process itself.

“You’re wrong; a simple n-fold 
cross validation on the bug dataset 
is enough to do away with all this 
time-traveling nonsense.”

Such cross validation can’t take 
into account the defect predictor’s 
potential impact on the system. In 
other words, recombining the train-
ing and testing datasets with n-fold 
cross validation won’t help you re-
construct the defect predictor’s po-
tential impact on the system by 
simulating the changes that such a 
recommender would make. Without 
an in vivo adoption, you simply can’t 
measure the predictor’s effect.

“Wait; if you did defect predic-
tion research yourself, aren’t you bit-
ing the hand that fed you?”

Yes, we are. We don’t deny that, 
nor do we regret it. Some of our 
most impactful (that is, cited) papers 
are in that area. Back in those days, 
we believed that was the way to do 
things. This insight of ours came 
only recently, but hey, better late 
than never.

Epilog
Although this article’s tone isn’t ex-
actly serious, the point we’re mak-
ing is a serious and honest criticism 

of how defect prediction approaches 
have been evaluated all these years.

We reiterate that we’re not criti-
cizing defect prediction approaches 
per se. In fact, many approaches are 
based on sound, meaningful assump-
tions. These are some well-known 
conjectures formulated by research-
ers: bugs might appear in parts of 
the system where bugs have already 
occurred,3 in parts that change fre-
quently,4 or where complex changes 
have been performed.5

These conjectures are clearly 
reasonable and well founded, and 
it’s interesting to investigate them 
to prove or disprove them. In the 
end, the overall goal has been and 
remains to advance the state of the 
art and the software engineering 
discipline, in which the engineer-
ing is to be considered as a set of 
proven best practices.

The problem isn’t the approaches. 
The problem lies in how the ap-
proaches are evaluated and how 
they’re being compared to each other.

The unpleasant truth is that a 
field such as defect prediction makes 
sense only if it’s used in vivo.

In other words, researchers 
should seriously consider putting 
their predictors out into the real 
world and having them used by de-
velopers who work on a live code 
base. Of course, this comes at a high 
cost. But then again, consider that if 
a predictor manages to correctly pre-
dict one single bug, this will have a 
real, concrete impact. That’s more 
than can be said about any approach 
relying on in vitro validation, no 
matter how extensive.
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